Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution

International audience Anthropogenic activities have led to large-scale mercury (Hg) pollution in the Arctic. It has been suggested that sea-salt-induced chemical cycling of Hg (through ‘atmospheric mercury depletion events’, or AMDEs) and wet deposition via precipitation are sources of Hg to the Ar...

Full description

Bibliographic Details
Published in:Nature
Main Authors: Obrist, Daniel, Agnan, Yannick, Jiskra, Martin, Olson, Christine L., Colegrove, Dominique P., Hueber, Jacques, Moore, Christopher W., Sonke, Jeroen E., Helmig, Detlev
Other Authors: Géosciences Environnement Toulouse (GET), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2017
Subjects:
Online Access:https://insu.hal.science/insu-03661370
https://doi.org/10.1038/nature22997
id ftmeteofrance:oai:HAL:insu-03661370v1
record_format openpolar
spelling ftmeteofrance:oai:HAL:insu-03661370v1 2024-04-21T07:55:09+00:00 Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution Obrist, Daniel Agnan, Yannick Jiskra, Martin Olson, Christine L. Colegrove, Dominique P. Hueber, Jacques Moore, Christopher W. Sonke, Jeroen E. Helmig, Detlev Géosciences Environnement Toulouse (GET) Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS) 2017 https://insu.hal.science/insu-03661370 https://doi.org/10.1038/nature22997 en eng HAL CCSD Nature Publishing Group info:eu-repo/semantics/altIdentifier/doi/10.1038/nature22997 insu-03661370 https://insu.hal.science/insu-03661370 BIBCODE: 2017Natur.547.201O doi:10.1038/nature22997 ISSN: 0028-0836 EISSN: 1476-4687 Nature https://insu.hal.science/insu-03661370 Nature, 2017, 547, pp.201-204. ⟨10.1038/nature22997⟩ [SDU]Sciences of the Universe [physics] info:eu-repo/semantics/article Journal articles 2017 ftmeteofrance https://doi.org/10.1038/nature22997 2024-03-28T00:54:09Z International audience Anthropogenic activities have led to large-scale mercury (Hg) pollution in the Arctic. It has been suggested that sea-salt-induced chemical cycling of Hg (through ‘atmospheric mercury depletion events’, or AMDEs) and wet deposition via precipitation are sources of Hg to the Arctic in its oxidized form (Hg(II)). However, there is little evidence for the occurrence of AMDEs outside of coastal regions, and their importance to net Hg deposition has been questioned. Furthermore, wet-deposition measurements in the Arctic showed some of the lowest levels of Hg deposition via precipitation worldwide, raising questions as to the sources of high Arctic Hg loading. Here we present a comprehensive Hg-deposition mass-balance study, and show that most of the Hg (about 70%) in the interior Arctic tundra is derived from gaseous elemental Hg (Hg(0)) deposition, with only minor contributions from the deposition of Hg(II) via precipitation or AMDEs. We find that deposition of Hg(0)—the form ubiquitously present in the global atmosphere—occurs throughout the year, and that it is enhanced in summer through the uptake of Hg(0) by vegetation. Tundra uptake of gaseous Hg(0) leads to high soil Hg concentrations, with Hg masses greatly exceeding the levels found in temperate soils. Our concurrent Hg stable isotope measurements in the atmosphere, snowpack, vegetation and soils support our finding that Hg(0) dominates as a source to the tundra. Hg concentration and stable isotope data from an inland-to-coastal transect show high soil Hg concentrations consistently derived from Hg(0), suggesting that the Arctic tundra might be a globally important Hg sink. We suggest that the high tundra soil Hg concentrations might also explain why Arctic rivers annually transport large amounts of Hg to the Arctic Ocean. Article in Journal/Newspaper Arctic Arctic Ocean Tundra Météo-France: HAL Nature 547 7662 201 204
institution Open Polar
collection Météo-France: HAL
op_collection_id ftmeteofrance
language English
topic [SDU]Sciences of the Universe [physics]
spellingShingle [SDU]Sciences of the Universe [physics]
Obrist, Daniel
Agnan, Yannick
Jiskra, Martin
Olson, Christine L.
Colegrove, Dominique P.
Hueber, Jacques
Moore, Christopher W.
Sonke, Jeroen E.
Helmig, Detlev
Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution
topic_facet [SDU]Sciences of the Universe [physics]
description International audience Anthropogenic activities have led to large-scale mercury (Hg) pollution in the Arctic. It has been suggested that sea-salt-induced chemical cycling of Hg (through ‘atmospheric mercury depletion events’, or AMDEs) and wet deposition via precipitation are sources of Hg to the Arctic in its oxidized form (Hg(II)). However, there is little evidence for the occurrence of AMDEs outside of coastal regions, and their importance to net Hg deposition has been questioned. Furthermore, wet-deposition measurements in the Arctic showed some of the lowest levels of Hg deposition via precipitation worldwide, raising questions as to the sources of high Arctic Hg loading. Here we present a comprehensive Hg-deposition mass-balance study, and show that most of the Hg (about 70%) in the interior Arctic tundra is derived from gaseous elemental Hg (Hg(0)) deposition, with only minor contributions from the deposition of Hg(II) via precipitation or AMDEs. We find that deposition of Hg(0)—the form ubiquitously present in the global atmosphere—occurs throughout the year, and that it is enhanced in summer through the uptake of Hg(0) by vegetation. Tundra uptake of gaseous Hg(0) leads to high soil Hg concentrations, with Hg masses greatly exceeding the levels found in temperate soils. Our concurrent Hg stable isotope measurements in the atmosphere, snowpack, vegetation and soils support our finding that Hg(0) dominates as a source to the tundra. Hg concentration and stable isotope data from an inland-to-coastal transect show high soil Hg concentrations consistently derived from Hg(0), suggesting that the Arctic tundra might be a globally important Hg sink. We suggest that the high tundra soil Hg concentrations might also explain why Arctic rivers annually transport large amounts of Hg to the Arctic Ocean.
author2 Géosciences Environnement Toulouse (GET)
Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)
format Article in Journal/Newspaper
author Obrist, Daniel
Agnan, Yannick
Jiskra, Martin
Olson, Christine L.
Colegrove, Dominique P.
Hueber, Jacques
Moore, Christopher W.
Sonke, Jeroen E.
Helmig, Detlev
author_facet Obrist, Daniel
Agnan, Yannick
Jiskra, Martin
Olson, Christine L.
Colegrove, Dominique P.
Hueber, Jacques
Moore, Christopher W.
Sonke, Jeroen E.
Helmig, Detlev
author_sort Obrist, Daniel
title Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution
title_short Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution
title_full Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution
title_fullStr Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution
title_full_unstemmed Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution
title_sort tundra uptake of atmospheric elemental mercury drives arctic mercury pollution
publisher HAL CCSD
publishDate 2017
url https://insu.hal.science/insu-03661370
https://doi.org/10.1038/nature22997
genre Arctic
Arctic Ocean
Tundra
genre_facet Arctic
Arctic Ocean
Tundra
op_source ISSN: 0028-0836
EISSN: 1476-4687
Nature
https://insu.hal.science/insu-03661370
Nature, 2017, 547, pp.201-204. ⟨10.1038/nature22997⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1038/nature22997
insu-03661370
https://insu.hal.science/insu-03661370
BIBCODE: 2017Natur.547.201O
doi:10.1038/nature22997
op_doi https://doi.org/10.1038/nature22997
container_title Nature
container_volume 547
container_issue 7662
container_start_page 201
op_container_end_page 204
_version_ 1796937368225185792