Evaluating the performance of coupled snow–soil models in SURFEXv8 to simulate the permafrost thermal regime at a high Arctic site

International audience Abstract. Climate change projections still suffer from a limited representation of the permafrost–carbon feedback. Predicting the response of permafrost temperature to climate change requires accurate simulations of Arctic snow and soil properties. This study assesses the capa...

Full description

Bibliographic Details
Published in:Geoscientific Model Development
Main Authors: Barrere, Mathieu, Domine, Florent, Decharme, Bertrand, Morin, Samuel, Vionnet, Vincent, Lafaysse, Matthieu
Other Authors: Takuvik Joint International Laboratory ULAVAL-CNRS, Université Laval Québec (ULaval)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS), Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS), Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2017
Subjects:
Online Access:https://insu.hal.science/insu-03326445
https://insu.hal.science/insu-03326445/document
https://insu.hal.science/insu-03326445/file/gmd-10-3461-2017.pdf
https://doi.org/10.5194/gmd-10-3461-2017
id ftmeteofrance:oai:HAL:insu-03326445v1
record_format openpolar
institution Open Polar
collection Météo-France: HAL
op_collection_id ftmeteofrance
language English
topic [SDU]Sciences of the Universe [physics]
spellingShingle [SDU]Sciences of the Universe [physics]
Barrere, Mathieu
Domine, Florent
Decharme, Bertrand
Morin, Samuel
Vionnet, Vincent
Lafaysse, Matthieu
Evaluating the performance of coupled snow–soil models in SURFEXv8 to simulate the permafrost thermal regime at a high Arctic site
topic_facet [SDU]Sciences of the Universe [physics]
description International audience Abstract. Climate change projections still suffer from a limited representation of the permafrost–carbon feedback. Predicting the response of permafrost temperature to climate change requires accurate simulations of Arctic snow and soil properties. This study assesses the capacity of the coupled land surface and snow models ISBA-Crocus and ISBA-ES to simulate snow and soil properties at Bylot Island, a high Arctic site. Field measurements complemented with ERA-Interim reanalyses were used to drive the models and to evaluate simulation outputs. Snow height, density, temperature, thermal conductivity and thermal insulance are examined to determine the critical variables involved in the soil and snow thermal regime. Simulated soil properties are compared to measurements of thermal conductivity, temperature and water content. The simulated snow density profiles are unrealistic, which is most likely caused by the lack of representation in snow models of the upward water vapor fluxes generated by the strong temperature gradients within the snowpack. The resulting vertical profiles of thermal conductivity are inverted compared to observations, with high simulated values at the bottom of the snowpack. Still, ISBA-Crocus manages to successfully simulate the soil temperature in winter. Results are satisfactory in summer, but the temperature of the top soil could be better reproduced by adequately representing surface organic layers, i.e., mosses and litter, and in particular their water retention capacity. Transition periods (soil freezing and thawing) are the least well reproduced because the high basal snow thermal conductivity induces an excessively rapid heat transfer between the soil and the snow in simulations. Hence, global climate models should carefully consider Arctic snow thermal properties, and especially the thermal conductivity of the basal snow layer, to perform accurate predictions of the permafrost evolution under climate change.
author2 Takuvik Joint International Laboratory ULAVAL-CNRS
Université Laval Québec (ULaval)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
Institut national des sciences de l'Univers (INSU - CNRS)
Centre national de recherches météorologiques (CNRM)
Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP)
Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)
Institut des Géosciences de l’Environnement (IGE)
Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )
format Article in Journal/Newspaper
author Barrere, Mathieu
Domine, Florent
Decharme, Bertrand
Morin, Samuel
Vionnet, Vincent
Lafaysse, Matthieu
author_facet Barrere, Mathieu
Domine, Florent
Decharme, Bertrand
Morin, Samuel
Vionnet, Vincent
Lafaysse, Matthieu
author_sort Barrere, Mathieu
title Evaluating the performance of coupled snow–soil models in SURFEXv8 to simulate the permafrost thermal regime at a high Arctic site
title_short Evaluating the performance of coupled snow–soil models in SURFEXv8 to simulate the permafrost thermal regime at a high Arctic site
title_full Evaluating the performance of coupled snow–soil models in SURFEXv8 to simulate the permafrost thermal regime at a high Arctic site
title_fullStr Evaluating the performance of coupled snow–soil models in SURFEXv8 to simulate the permafrost thermal regime at a high Arctic site
title_full_unstemmed Evaluating the performance of coupled snow–soil models in SURFEXv8 to simulate the permafrost thermal regime at a high Arctic site
title_sort evaluating the performance of coupled snow–soil models in surfexv8 to simulate the permafrost thermal regime at a high arctic site
publisher HAL CCSD
publishDate 2017
url https://insu.hal.science/insu-03326445
https://insu.hal.science/insu-03326445/document
https://insu.hal.science/insu-03326445/file/gmd-10-3461-2017.pdf
https://doi.org/10.5194/gmd-10-3461-2017
geographic Arctic
Bylot Island
geographic_facet Arctic
Bylot Island
genre Arctic
Bylot Island
Climate change
permafrost
genre_facet Arctic
Bylot Island
Climate change
permafrost
op_source ISSN: 1991-962X
Geoscientific Model Development Discussions
https://insu.hal.science/insu-03326445
Geoscientific Model Development Discussions, 2017, 10 (9), pp.3461-3479. ⟨10.5194/gmd-10-3461-2017⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.5194/gmd-10-3461-2017
insu-03326445
https://insu.hal.science/insu-03326445
https://insu.hal.science/insu-03326445/document
https://insu.hal.science/insu-03326445/file/gmd-10-3461-2017.pdf
doi:10.5194/gmd-10-3461-2017
op_rights http://creativecommons.org/licenses/by/
info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.5194/gmd-10-3461-2017
container_title Geoscientific Model Development
container_volume 10
container_issue 9
container_start_page 3461
op_container_end_page 3479
_version_ 1801372464246161408
spelling ftmeteofrance:oai:HAL:insu-03326445v1 2024-06-09T07:43:36+00:00 Evaluating the performance of coupled snow–soil models in SURFEXv8 to simulate the permafrost thermal regime at a high Arctic site Barrere, Mathieu Domine, Florent Decharme, Bertrand Morin, Samuel Vionnet, Vincent Lafaysse, Matthieu Takuvik Joint International Laboratory ULAVAL-CNRS Université Laval Québec (ULaval)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) Institut national des sciences de l'Univers (INSU - CNRS) Centre national de recherches météorologiques (CNRM) Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS) Institut des Géosciences de l’Environnement (IGE) Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ) 2017 https://insu.hal.science/insu-03326445 https://insu.hal.science/insu-03326445/document https://insu.hal.science/insu-03326445/file/gmd-10-3461-2017.pdf https://doi.org/10.5194/gmd-10-3461-2017 en eng HAL CCSD Copernicus Publ info:eu-repo/semantics/altIdentifier/doi/10.5194/gmd-10-3461-2017 insu-03326445 https://insu.hal.science/insu-03326445 https://insu.hal.science/insu-03326445/document https://insu.hal.science/insu-03326445/file/gmd-10-3461-2017.pdf doi:10.5194/gmd-10-3461-2017 http://creativecommons.org/licenses/by/ info:eu-repo/semantics/OpenAccess ISSN: 1991-962X Geoscientific Model Development Discussions https://insu.hal.science/insu-03326445 Geoscientific Model Development Discussions, 2017, 10 (9), pp.3461-3479. ⟨10.5194/gmd-10-3461-2017⟩ [SDU]Sciences of the Universe [physics] info:eu-repo/semantics/article Journal articles 2017 ftmeteofrance https://doi.org/10.5194/gmd-10-3461-2017 2024-05-16T11:50:35Z International audience Abstract. Climate change projections still suffer from a limited representation of the permafrost–carbon feedback. Predicting the response of permafrost temperature to climate change requires accurate simulations of Arctic snow and soil properties. This study assesses the capacity of the coupled land surface and snow models ISBA-Crocus and ISBA-ES to simulate snow and soil properties at Bylot Island, a high Arctic site. Field measurements complemented with ERA-Interim reanalyses were used to drive the models and to evaluate simulation outputs. Snow height, density, temperature, thermal conductivity and thermal insulance are examined to determine the critical variables involved in the soil and snow thermal regime. Simulated soil properties are compared to measurements of thermal conductivity, temperature and water content. The simulated snow density profiles are unrealistic, which is most likely caused by the lack of representation in snow models of the upward water vapor fluxes generated by the strong temperature gradients within the snowpack. The resulting vertical profiles of thermal conductivity are inverted compared to observations, with high simulated values at the bottom of the snowpack. Still, ISBA-Crocus manages to successfully simulate the soil temperature in winter. Results are satisfactory in summer, but the temperature of the top soil could be better reproduced by adequately representing surface organic layers, i.e., mosses and litter, and in particular their water retention capacity. Transition periods (soil freezing and thawing) are the least well reproduced because the high basal snow thermal conductivity induces an excessively rapid heat transfer between the soil and the snow in simulations. Hence, global climate models should carefully consider Arctic snow thermal properties, and especially the thermal conductivity of the basal snow layer, to perform accurate predictions of the permafrost evolution under climate change. Article in Journal/Newspaper Arctic Bylot Island Climate change permafrost Météo-France: HAL Arctic Bylot Island Geoscientific Model Development 10 9 3461 3479