Design of a scanning laser meter for monitoring the spatio-temporal evolution of snow depth and its application in the Alps and in Antarctica
International audience Although both the temporal and spatial variations of the snow depth are usually of interest for numerous applications , available measurement techniques are either space-oriented (e.g. terrestrial laser scans) or time-oriented (e.g. ultrasonic ranging probe). Because of snow h...
Published in: | The Cryosphere |
---|---|
Main Authors: | , , , |
Other Authors: | , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2016
|
Subjects: | |
Online Access: | https://insu.hal.science/insu-01392026 https://insu.hal.science/insu-01392026/document https://insu.hal.science/insu-01392026/file/CRYOSPHERE%20-%20Design%20of%20a%20scanning%20laser%20meter%20for%20monitoring%20the%20spatio-temporal%20evolution%20of%20snow%20depth%20and%20its%20application%20in%20the%20Alps%20and%20in%20Antarctica.pdf https://doi.org/10.5194/tc-10-1495-2016 |
id |
ftmeteofrance:oai:HAL:insu-01392026v1 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
Météo-France: HAL |
op_collection_id |
ftmeteofrance |
language |
English |
topic |
[SDE]Environmental Sciences |
spellingShingle |
[SDE]Environmental Sciences Picard, Ghislain Arnaud, Laurent Panel, Jean-Michel Morin, Samuel Design of a scanning laser meter for monitoring the spatio-temporal evolution of snow depth and its application in the Alps and in Antarctica |
topic_facet |
[SDE]Environmental Sciences |
description |
International audience Although both the temporal and spatial variations of the snow depth are usually of interest for numerous applications , available measurement techniques are either space-oriented (e.g. terrestrial laser scans) or time-oriented (e.g. ultrasonic ranging probe). Because of snow heterogeneity, measuring depth in a single point is insufficient to provide accurate and representative estimates. We present a cost-effective automatic instrument to acquire spatio-temporal variations of snow depth. The device comprises a laser meter mounted on a 2-axis stage and can scan ≈ 200 000 points over an area of 100–200 m 2 in 4 h. Two instruments, installed in Antarctica (Dome C) and the French Alps (Col de Porte), have been operating continuously and unattended over 2015 with a success rate of 65 and 90 % respectively. The precision of single point measurements and long-term stability were evaluated to be about 1 cm and the accuracy to be 5 cm or better. The spatial variability in the scanned area reached 7–10 cm (root mean square) at both sites, which means that the number of measurements is sufficient to average out the spatial variability and yield precise mean snow depth. With such high precision, it was possible for the first time at Dome C to (1) observe a 3-month period of regular and slow increase of snow depth without apparent link to snowfalls and (2) highlight that most of the annual accumulation stems from a single event although several snowfall and strong wind events were predicted by the ERA-Interim reanalysis. Finally the paper discusses the benefit of laser scanning compared to multiplying single-point sensors in the context of monitoring snow depth. |
author2 |
Laboratoire de glaciologie et géophysique de l'environnement (LGGE) Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ) Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ) Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ) Antarctic Climate and Ecosystems Cooperative Research Centre (ACE-CRC) Centre national de recherches météorologiques (CNRM) Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS) |
format |
Article in Journal/Newspaper |
author |
Picard, Ghislain Arnaud, Laurent Panel, Jean-Michel Morin, Samuel |
author_facet |
Picard, Ghislain Arnaud, Laurent Panel, Jean-Michel Morin, Samuel |
author_sort |
Picard, Ghislain |
title |
Design of a scanning laser meter for monitoring the spatio-temporal evolution of snow depth and its application in the Alps and in Antarctica |
title_short |
Design of a scanning laser meter for monitoring the spatio-temporal evolution of snow depth and its application in the Alps and in Antarctica |
title_full |
Design of a scanning laser meter for monitoring the spatio-temporal evolution of snow depth and its application in the Alps and in Antarctica |
title_fullStr |
Design of a scanning laser meter for monitoring the spatio-temporal evolution of snow depth and its application in the Alps and in Antarctica |
title_full_unstemmed |
Design of a scanning laser meter for monitoring the spatio-temporal evolution of snow depth and its application in the Alps and in Antarctica |
title_sort |
design of a scanning laser meter for monitoring the spatio-temporal evolution of snow depth and its application in the alps and in antarctica |
publisher |
HAL CCSD |
publishDate |
2016 |
url |
https://insu.hal.science/insu-01392026 https://insu.hal.science/insu-01392026/document https://insu.hal.science/insu-01392026/file/CRYOSPHERE%20-%20Design%20of%20a%20scanning%20laser%20meter%20for%20monitoring%20the%20spatio-temporal%20evolution%20of%20snow%20depth%20and%20its%20application%20in%20the%20Alps%20and%20in%20Antarctica.pdf https://doi.org/10.5194/tc-10-1495-2016 |
genre |
Antarc* Antarctica The Cryosphere |
genre_facet |
Antarc* Antarctica The Cryosphere |
op_source |
ISSN: 1994-0424 EISSN: 1994-0416 The Cryosphere https://insu.hal.science/insu-01392026 The Cryosphere, 2016, 10, pp.1495 - 1511. ⟨10.5194/tc-10-1495-2016⟩ |
op_relation |
info:eu-repo/semantics/altIdentifier/doi/10.5194/tc-10-1495-2016 insu-01392026 https://insu.hal.science/insu-01392026 https://insu.hal.science/insu-01392026/document https://insu.hal.science/insu-01392026/file/CRYOSPHERE%20-%20Design%20of%20a%20scanning%20laser%20meter%20for%20monitoring%20the%20spatio-temporal%20evolution%20of%20snow%20depth%20and%20its%20application%20in%20the%20Alps%20and%20in%20Antarctica.pdf doi:10.5194/tc-10-1495-2016 |
op_rights |
info:eu-repo/semantics/OpenAccess |
op_doi |
https://doi.org/10.5194/tc-10-1495-2016 |
container_title |
The Cryosphere |
container_volume |
10 |
container_issue |
4 |
container_start_page |
1495 |
op_container_end_page |
1511 |
_version_ |
1810489036940247040 |
spelling |
ftmeteofrance:oai:HAL:insu-01392026v1 2024-09-15T17:42:27+00:00 Design of a scanning laser meter for monitoring the spatio-temporal evolution of snow depth and its application in the Alps and in Antarctica Picard, Ghislain Arnaud, Laurent Panel, Jean-Michel Morin, Samuel Laboratoire de glaciologie et géophysique de l'environnement (LGGE) Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ) Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ) Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ) Antarctic Climate and Ecosystems Cooperative Research Centre (ACE-CRC) Centre national de recherches météorologiques (CNRM) Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS) 2016 https://insu.hal.science/insu-01392026 https://insu.hal.science/insu-01392026/document https://insu.hal.science/insu-01392026/file/CRYOSPHERE%20-%20Design%20of%20a%20scanning%20laser%20meter%20for%20monitoring%20the%20spatio-temporal%20evolution%20of%20snow%20depth%20and%20its%20application%20in%20the%20Alps%20and%20in%20Antarctica.pdf https://doi.org/10.5194/tc-10-1495-2016 en eng HAL CCSD Copernicus info:eu-repo/semantics/altIdentifier/doi/10.5194/tc-10-1495-2016 insu-01392026 https://insu.hal.science/insu-01392026 https://insu.hal.science/insu-01392026/document https://insu.hal.science/insu-01392026/file/CRYOSPHERE%20-%20Design%20of%20a%20scanning%20laser%20meter%20for%20monitoring%20the%20spatio-temporal%20evolution%20of%20snow%20depth%20and%20its%20application%20in%20the%20Alps%20and%20in%20Antarctica.pdf doi:10.5194/tc-10-1495-2016 info:eu-repo/semantics/OpenAccess ISSN: 1994-0424 EISSN: 1994-0416 The Cryosphere https://insu.hal.science/insu-01392026 The Cryosphere, 2016, 10, pp.1495 - 1511. ⟨10.5194/tc-10-1495-2016⟩ [SDE]Environmental Sciences info:eu-repo/semantics/article Journal articles 2016 ftmeteofrance https://doi.org/10.5194/tc-10-1495-2016 2024-07-01T23:38:57Z International audience Although both the temporal and spatial variations of the snow depth are usually of interest for numerous applications , available measurement techniques are either space-oriented (e.g. terrestrial laser scans) or time-oriented (e.g. ultrasonic ranging probe). Because of snow heterogeneity, measuring depth in a single point is insufficient to provide accurate and representative estimates. We present a cost-effective automatic instrument to acquire spatio-temporal variations of snow depth. The device comprises a laser meter mounted on a 2-axis stage and can scan ≈ 200 000 points over an area of 100–200 m 2 in 4 h. Two instruments, installed in Antarctica (Dome C) and the French Alps (Col de Porte), have been operating continuously and unattended over 2015 with a success rate of 65 and 90 % respectively. The precision of single point measurements and long-term stability were evaluated to be about 1 cm and the accuracy to be 5 cm or better. The spatial variability in the scanned area reached 7–10 cm (root mean square) at both sites, which means that the number of measurements is sufficient to average out the spatial variability and yield precise mean snow depth. With such high precision, it was possible for the first time at Dome C to (1) observe a 3-month period of regular and slow increase of snow depth without apparent link to snowfalls and (2) highlight that most of the annual accumulation stems from a single event although several snowfall and strong wind events were predicted by the ERA-Interim reanalysis. Finally the paper discusses the benefit of laser scanning compared to multiplying single-point sensors in the context of monitoring snow depth. Article in Journal/Newspaper Antarc* Antarctica The Cryosphere Météo-France: HAL The Cryosphere 10 4 1495 1511 |