Clouds damp the radiative impacts of polar sea ice loss

International audience Clouds play an important role in the climate system: (1) cooling Earth by reflecting incoming sunlight to space and (2) warming Earth by reducing thermal energy loss to space. Cloud radiative effects are especially important in polar regions and have the potential to significa...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: Alkama, Ramdane, Taylor, Patrick C., Garcia-San Martin, Lorea, Douville, Herve, Duveiller, Gregory, Forzieri, Giovanni, Swingedouw, Didier, Cescatti, Alessandro
Other Authors: Joint Research Center, Ispra, Italy, NASA Langley Research Center Hampton (LaRC), Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS), Environnements et Paléoenvironnements OCéaniques (EPOC), Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École Pratique des Hautes Études (EPHE), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2020
Subjects:
Online Access:https://hal.science/hal-04548487
https://hal.science/hal-04548487/document
https://hal.science/hal-04548487/file/tc-14-2673-2020.pdf
https://doi.org/10.5194/tc-14-2673-2020
id ftmeteofrance:oai:HAL:hal-04548487v1
record_format openpolar
institution Open Polar
collection Météo-France: HAL
op_collection_id ftmeteofrance
language English
topic [SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology
[SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology
spellingShingle [SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology
[SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology
Alkama, Ramdane
Taylor, Patrick C.
Garcia-San Martin, Lorea
Douville, Herve
Duveiller, Gregory
Forzieri, Giovanni
Swingedouw, Didier
Cescatti, Alessandro
Clouds damp the radiative impacts of polar sea ice loss
topic_facet [SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology
[SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology
description International audience Clouds play an important role in the climate system: (1) cooling Earth by reflecting incoming sunlight to space and (2) warming Earth by reducing thermal energy loss to space. Cloud radiative effects are especially important in polar regions and have the potential to significantly alter the impact of sea ice decline on the surface radiation budget. Using CERES (Clouds and the Earth's Radiant Energy System) data and 32 CMIP5 (Coupled Model Intercomparison Project) climate models, we quantify the influence of polar clouds on the radiative impact of polar sea ice variability. Our results show that the cloud short-wave cooling effect strongly influences the impact of sea ice variability on the surface radiation budget and does so in a counter-intuitive manner over the polar seas: years with less sea ice and a larger net surface radiative flux show a more negative cloud radiative effect. Our results indicate that 66±2% of this change in the net cloud radiative effect is due to the reduction in surface albedo and that the remaining 34±1 % is due to an increase in cloud cover and optical thickness. The overall cloud radiative damping effect is 56±2 % over the Antarctic and 47±3 % over the Arctic. Thus, present-day cloud properties significantly reduce the net radiative impact of sea ice loss on the Arctic and Antarctic surface radiation budgets. As a result, climate models must accurately represent present-day polar cloud properties in order to capture the surface radiation budget impact of polar sea ice loss and thus the surface albedo feedback.
author2 Joint Research Center, Ispra, Italy
NASA Langley Research Center Hampton (LaRC)
Centre national de recherches météorologiques (CNRM)
Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP)
Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)
Environnements et Paléoenvironnements OCéaniques (EPOC)
Observatoire aquitain des sciences de l'univers (OASU)
Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École Pratique des Hautes Études (EPHE)
Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
format Article in Journal/Newspaper
author Alkama, Ramdane
Taylor, Patrick C.
Garcia-San Martin, Lorea
Douville, Herve
Duveiller, Gregory
Forzieri, Giovanni
Swingedouw, Didier
Cescatti, Alessandro
author_facet Alkama, Ramdane
Taylor, Patrick C.
Garcia-San Martin, Lorea
Douville, Herve
Duveiller, Gregory
Forzieri, Giovanni
Swingedouw, Didier
Cescatti, Alessandro
author_sort Alkama, Ramdane
title Clouds damp the radiative impacts of polar sea ice loss
title_short Clouds damp the radiative impacts of polar sea ice loss
title_full Clouds damp the radiative impacts of polar sea ice loss
title_fullStr Clouds damp the radiative impacts of polar sea ice loss
title_full_unstemmed Clouds damp the radiative impacts of polar sea ice loss
title_sort clouds damp the radiative impacts of polar sea ice loss
publisher HAL CCSD
publishDate 2020
url https://hal.science/hal-04548487
https://hal.science/hal-04548487/document
https://hal.science/hal-04548487/file/tc-14-2673-2020.pdf
https://doi.org/10.5194/tc-14-2673-2020
genre albedo
Antarc*
Antarctic
Sea ice
The Cryosphere
genre_facet albedo
Antarc*
Antarctic
Sea ice
The Cryosphere
op_source ISSN: 1994-0424
EISSN: 1994-0416
The Cryosphere
https://hal.science/hal-04548487
The Cryosphere, 2020, 14 (8), pp.2673-2686. ⟨10.5194/tc-14-2673-2020⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.5194/tc-14-2673-2020
hal-04548487
https://hal.science/hal-04548487
https://hal.science/hal-04548487/document
https://hal.science/hal-04548487/file/tc-14-2673-2020.pdf
doi:10.5194/tc-14-2673-2020
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.5194/tc-14-2673-2020
container_title The Cryosphere
container_volume 14
container_issue 8
container_start_page 2673
op_container_end_page 2686
_version_ 1810484672939950080
spelling ftmeteofrance:oai:HAL:hal-04548487v1 2024-09-15T17:35:54+00:00 Clouds damp the radiative impacts of polar sea ice loss Alkama, Ramdane Taylor, Patrick C. Garcia-San Martin, Lorea Douville, Herve Duveiller, Gregory Forzieri, Giovanni Swingedouw, Didier Cescatti, Alessandro Joint Research Center, Ispra, Italy NASA Langley Research Center Hampton (LaRC) Centre national de recherches météorologiques (CNRM) Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS) Environnements et Paléoenvironnements OCéaniques (EPOC) Observatoire aquitain des sciences de l'univers (OASU) Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École Pratique des Hautes Études (EPHE) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS) 2020 https://hal.science/hal-04548487 https://hal.science/hal-04548487/document https://hal.science/hal-04548487/file/tc-14-2673-2020.pdf https://doi.org/10.5194/tc-14-2673-2020 en eng HAL CCSD Copernicus info:eu-repo/semantics/altIdentifier/doi/10.5194/tc-14-2673-2020 hal-04548487 https://hal.science/hal-04548487 https://hal.science/hal-04548487/document https://hal.science/hal-04548487/file/tc-14-2673-2020.pdf doi:10.5194/tc-14-2673-2020 info:eu-repo/semantics/OpenAccess ISSN: 1994-0424 EISSN: 1994-0416 The Cryosphere https://hal.science/hal-04548487 The Cryosphere, 2020, 14 (8), pp.2673-2686. ⟨10.5194/tc-14-2673-2020⟩ [SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology [SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology info:eu-repo/semantics/article Journal articles 2020 ftmeteofrance https://doi.org/10.5194/tc-14-2673-2020 2024-06-25T00:03:19Z International audience Clouds play an important role in the climate system: (1) cooling Earth by reflecting incoming sunlight to space and (2) warming Earth by reducing thermal energy loss to space. Cloud radiative effects are especially important in polar regions and have the potential to significantly alter the impact of sea ice decline on the surface radiation budget. Using CERES (Clouds and the Earth's Radiant Energy System) data and 32 CMIP5 (Coupled Model Intercomparison Project) climate models, we quantify the influence of polar clouds on the radiative impact of polar sea ice variability. Our results show that the cloud short-wave cooling effect strongly influences the impact of sea ice variability on the surface radiation budget and does so in a counter-intuitive manner over the polar seas: years with less sea ice and a larger net surface radiative flux show a more negative cloud radiative effect. Our results indicate that 66±2% of this change in the net cloud radiative effect is due to the reduction in surface albedo and that the remaining 34±1 % is due to an increase in cloud cover and optical thickness. The overall cloud radiative damping effect is 56±2 % over the Antarctic and 47±3 % over the Arctic. Thus, present-day cloud properties significantly reduce the net radiative impact of sea ice loss on the Arctic and Antarctic surface radiation budgets. As a result, climate models must accurately represent present-day polar cloud properties in order to capture the surface radiation budget impact of polar sea ice loss and thus the surface albedo feedback. Article in Journal/Newspaper albedo Antarc* Antarctic Sea ice The Cryosphere Météo-France: HAL The Cryosphere 14 8 2673 2686