Modelling surface temperature and radiation budget of snow-covered complex terrain
International audience Abstract. The surface temperature controls the temporal evolution of the snowpack, playing a key role in metamorphism and snowmelt. It shows large spatial variations in mountainous areas because the surface energy budget is affected by the topography, for instance because of t...
Published in: | The Cryosphere |
---|---|
Main Authors: | , , , , |
Other Authors: | , , , , , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2022
|
Subjects: | |
Online Access: | https://hal.science/hal-04389392 https://hal.science/hal-04389392/document https://hal.science/hal-04389392/file/robledano_2022.pdf https://doi.org/10.5194/tc-16-559-2022 |
id |
ftmeteofrance:oai:HAL:hal-04389392v1 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
Météo-France: HAL |
op_collection_id |
ftmeteofrance |
language |
English |
topic |
[SDE]Environmental Sciences |
spellingShingle |
[SDE]Environmental Sciences Robledano, Alvaro Picard, Ghislain Arnaud, Laurent Larue, Fanny Ollivier, Inès Modelling surface temperature and radiation budget of snow-covered complex terrain |
topic_facet |
[SDE]Environmental Sciences |
description |
International audience Abstract. The surface temperature controls the temporal evolution of the snowpack, playing a key role in metamorphism and snowmelt. It shows large spatial variations in mountainous areas because the surface energy budget is affected by the topography, for instance because of the modulation of the short-wave irradiance by the local slope and the shadows and the short-wave and long-wave re-illumination of the surface from surrounding slopes. These topographic effects are often neglected in large-scale models considering the surface to be flat and smooth. Here we aim at estimating the surface temperature of snow-covered mountainous terrain in clear-sky conditions in order to evaluate the relative importance of the different processes that control the spatial variations. For this, a modelling chain is implemented to compute the surface temperature in a kilometre-wide area from local radiometric and meteorological measurements at a single station. The first component of this chain is the Rough Surface Ray-Tracing (RSRT) model. Based on a photon transport Monte Carlo algorithm, this model quantifies the incident and reflected short-wave radiation on every facet of the mesh describing the snow-covered terrain. The second component is a surface scheme that estimates the terms of the surface energy budget from which the surface temperature is eventually estimated. To assess the modelling chain performance, we use in situ measurements of surface temperature and satellite thermal observations (Landsat 8) in the Col du Lautaret area, in the French Alps. The results of the simulations show (i) an agreement between the simulated and measured surface temperature at the station for a diurnal cycle in winter within 0.2 ∘C; (ii) that the spatial variations in surface temperature are on the order of 5 to 10 ∘C in the domain and are well represented by the model; and (iii) that the topographic effects ranked by importance are the modulation of solar irradiance by the local slope, followed by the altitudinal ... |
author2 |
Institut des Géosciences de l’Environnement (IGE) Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) Université Grenoble Alpes (UGA) Centre d'Etudes de la Neige (CEN) Centre national de recherches météorologiques (CNRM) Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG )-Université Grenoble Alpes (UGA) Université Joseph Fourier - Grenoble 1 (UJF) University of Sheffield Sheffield Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT) Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) |
format |
Article in Journal/Newspaper |
author |
Robledano, Alvaro Picard, Ghislain Arnaud, Laurent Larue, Fanny Ollivier, Inès |
author_facet |
Robledano, Alvaro Picard, Ghislain Arnaud, Laurent Larue, Fanny Ollivier, Inès |
author_sort |
Robledano, Alvaro |
title |
Modelling surface temperature and radiation budget of snow-covered complex terrain |
title_short |
Modelling surface temperature and radiation budget of snow-covered complex terrain |
title_full |
Modelling surface temperature and radiation budget of snow-covered complex terrain |
title_fullStr |
Modelling surface temperature and radiation budget of snow-covered complex terrain |
title_full_unstemmed |
Modelling surface temperature and radiation budget of snow-covered complex terrain |
title_sort |
modelling surface temperature and radiation budget of snow-covered complex terrain |
publisher |
HAL CCSD |
publishDate |
2022 |
url |
https://hal.science/hal-04389392 https://hal.science/hal-04389392/document https://hal.science/hal-04389392/file/robledano_2022.pdf https://doi.org/10.5194/tc-16-559-2022 |
genre |
The Cryosphere |
genre_facet |
The Cryosphere |
op_source |
ISSN: 1994-0424 EISSN: 1994-0416 The Cryosphere https://hal.science/hal-04389392 The Cryosphere, 2022, 16 (2), pp.559-579. ⟨10.5194/tc-16-559-2022⟩ |
op_relation |
info:eu-repo/semantics/altIdentifier/doi/10.5194/tc-16-559-2022 hal-04389392 https://hal.science/hal-04389392 https://hal.science/hal-04389392/document https://hal.science/hal-04389392/file/robledano_2022.pdf doi:10.5194/tc-16-559-2022 |
op_rights |
info:eu-repo/semantics/OpenAccess |
op_doi |
https://doi.org/10.5194/tc-16-559-2022 |
container_title |
The Cryosphere |
container_volume |
16 |
container_issue |
2 |
container_start_page |
559 |
op_container_end_page |
579 |
_version_ |
1810483342641987584 |
spelling |
ftmeteofrance:oai:HAL:hal-04389392v1 2024-09-15T18:38:57+00:00 Modelling surface temperature and radiation budget of snow-covered complex terrain Robledano, Alvaro Picard, Ghislain Arnaud, Laurent Larue, Fanny Ollivier, Inès Institut des Géosciences de l’Environnement (IGE) Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) Université Grenoble Alpes (UGA) Centre d'Etudes de la Neige (CEN) Centre national de recherches météorologiques (CNRM) Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG )-Université Grenoble Alpes (UGA) Université Joseph Fourier - Grenoble 1 (UJF) University of Sheffield Sheffield Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT) Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) 2022-02-15 https://hal.science/hal-04389392 https://hal.science/hal-04389392/document https://hal.science/hal-04389392/file/robledano_2022.pdf https://doi.org/10.5194/tc-16-559-2022 en eng HAL CCSD Copernicus info:eu-repo/semantics/altIdentifier/doi/10.5194/tc-16-559-2022 hal-04389392 https://hal.science/hal-04389392 https://hal.science/hal-04389392/document https://hal.science/hal-04389392/file/robledano_2022.pdf doi:10.5194/tc-16-559-2022 info:eu-repo/semantics/OpenAccess ISSN: 1994-0424 EISSN: 1994-0416 The Cryosphere https://hal.science/hal-04389392 The Cryosphere, 2022, 16 (2), pp.559-579. ⟨10.5194/tc-16-559-2022⟩ [SDE]Environmental Sciences info:eu-repo/semantics/article Journal articles 2022 ftmeteofrance https://doi.org/10.5194/tc-16-559-2022 2024-06-25T00:03:19Z International audience Abstract. The surface temperature controls the temporal evolution of the snowpack, playing a key role in metamorphism and snowmelt. It shows large spatial variations in mountainous areas because the surface energy budget is affected by the topography, for instance because of the modulation of the short-wave irradiance by the local slope and the shadows and the short-wave and long-wave re-illumination of the surface from surrounding slopes. These topographic effects are often neglected in large-scale models considering the surface to be flat and smooth. Here we aim at estimating the surface temperature of snow-covered mountainous terrain in clear-sky conditions in order to evaluate the relative importance of the different processes that control the spatial variations. For this, a modelling chain is implemented to compute the surface temperature in a kilometre-wide area from local radiometric and meteorological measurements at a single station. The first component of this chain is the Rough Surface Ray-Tracing (RSRT) model. Based on a photon transport Monte Carlo algorithm, this model quantifies the incident and reflected short-wave radiation on every facet of the mesh describing the snow-covered terrain. The second component is a surface scheme that estimates the terms of the surface energy budget from which the surface temperature is eventually estimated. To assess the modelling chain performance, we use in situ measurements of surface temperature and satellite thermal observations (Landsat 8) in the Col du Lautaret area, in the French Alps. The results of the simulations show (i) an agreement between the simulated and measured surface temperature at the station for a diurnal cycle in winter within 0.2 ∘C; (ii) that the spatial variations in surface temperature are on the order of 5 to 10 ∘C in the domain and are well represented by the model; and (iii) that the topographic effects ranked by importance are the modulation of solar irradiance by the local slope, followed by the altitudinal ... Article in Journal/Newspaper The Cryosphere Météo-France: HAL The Cryosphere 16 2 559 579 |