Monitoring snow water equivalent using the phase of RFID signals

International audience The amount of water contained in a snowpack, known as snow water equivalent (SWE), is used to anticipate the amount of snowmelt that could supply hydroelectric power plants, fill water reservoirs, or sometimes cause flooding. This work introduces a wireless, non-destructive me...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: Le Breton, Mathieu, Larose, Éric, Baillet, Laurent, Lejeune, Yves, van Herwijnen, Alec
Other Authors: Groupe Géolithe, Institut des Sciences de la Terre (ISTerre), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-Université Grenoble Alpes (UGA), Centre d'Etudes de la Neige (CEN), Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), SLF Institut pour l'étude de la neige et des avalanches (SLF), SLF, Géolithe Innov, ANR-17-LCV2-0007,GEO3I LAB,Laboratoire Innovation en Géophysique, Géomécanique, Géotechnique(2017)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2023
Subjects:
Online Access:https://hal.science/hal-04178023
https://hal.science/hal-04178023/document
https://hal.science/hal-04178023/file/tc-17-3137-2023.pdf
https://doi.org/10.5194/tc-17-3137-2023
id ftmeteofrance:oai:HAL:hal-04178023v1
record_format openpolar
institution Open Polar
collection Météo-France: HAL
op_collection_id ftmeteofrance
language English
topic [SDE]Environmental Sciences
[SPI]Engineering Sciences [physics]
spellingShingle [SDE]Environmental Sciences
[SPI]Engineering Sciences [physics]
Le Breton, Mathieu
Larose, Éric
Baillet, Laurent
Lejeune, Yves
van Herwijnen, Alec
Monitoring snow water equivalent using the phase of RFID signals
topic_facet [SDE]Environmental Sciences
[SPI]Engineering Sciences [physics]
description International audience The amount of water contained in a snowpack, known as snow water equivalent (SWE), is used to anticipate the amount of snowmelt that could supply hydroelectric power plants, fill water reservoirs, or sometimes cause flooding. This work introduces a wireless, non-destructive method for monitoring the SWE of a dry snowpack. The system is based on an array of low-cost passive radiofrequency identification (RFID) tags, placed under the snow and read at 865–868 MHz by a reader located above the snow. The SWE was deduced from the phase delay of the tag's backscattered response, which increases with the amount of snow traversed by the radiofrequency wave. Measurements taken in the laboratory, during snowfall events and over 4.5 months at the Col de Porte test field, were consistent with reference measurements of cosmic rays, precipitation and snow pits. SWE accuracy was ±18 kg m−2 throughout the season (averaged over three tags) and ±3 kg m−2 during dry snowfall events (averaged over data from two antennas and four or five tags). The overall uncertainty compared to snow weighing was ±10 % for snow density in the range 61–390 kg m−3. The main limitations observed were measurement bias caused by wet snow (biased data were discarded) and the need for phase unwrapping. The method has a number of advantages: it allows for continuous measurement (1 min sampling rate in dry snow), it can provide complementary measurement of tag temperature, it does not require the reception of external data, and it opens the way towards spatialized measurements. The results presented also demonstrate that RFID propagation-based sensing can remotely monitor the permittivity of a low-loss dielectric material with scientific-level accuracy.
author2 Groupe Géolithe
Institut des Sciences de la Terre (ISTerre)
Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-Université Grenoble Alpes (UGA)
Centre d'Etudes de la Neige (CEN)
Centre national de recherches météorologiques (CNRM)
Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP)
Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG )
Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
SLF Institut pour l'étude de la neige et des avalanches (SLF)
SLF
Géolithe Innov
ANR-17-LCV2-0007,GEO3I LAB,Laboratoire Innovation en Géophysique, Géomécanique, Géotechnique(2017)
format Article in Journal/Newspaper
author Le Breton, Mathieu
Larose, Éric
Baillet, Laurent
Lejeune, Yves
van Herwijnen, Alec
author_facet Le Breton, Mathieu
Larose, Éric
Baillet, Laurent
Lejeune, Yves
van Herwijnen, Alec
author_sort Le Breton, Mathieu
title Monitoring snow water equivalent using the phase of RFID signals
title_short Monitoring snow water equivalent using the phase of RFID signals
title_full Monitoring snow water equivalent using the phase of RFID signals
title_fullStr Monitoring snow water equivalent using the phase of RFID signals
title_full_unstemmed Monitoring snow water equivalent using the phase of RFID signals
title_sort monitoring snow water equivalent using the phase of rfid signals
publisher HAL CCSD
publishDate 2023
url https://hal.science/hal-04178023
https://hal.science/hal-04178023/document
https://hal.science/hal-04178023/file/tc-17-3137-2023.pdf
https://doi.org/10.5194/tc-17-3137-2023
genre The Cryosphere
genre_facet The Cryosphere
op_source ISSN: 1994-0424
EISSN: 1994-0416
The Cryosphere
https://hal.science/hal-04178023
The Cryosphere, 2023, 17 (8), pp.3137-3156. ⟨10.5194/tc-17-3137-2023⟩
https://tc.copernicus.org/articles/17/3137/2023/
op_relation info:eu-repo/semantics/altIdentifier/doi/10.5194/tc-17-3137-2023
hal-04178023
https://hal.science/hal-04178023
https://hal.science/hal-04178023/document
https://hal.science/hal-04178023/file/tc-17-3137-2023.pdf
doi:10.5194/tc-17-3137-2023
op_rights http://creativecommons.org/licenses/by/
info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.5194/tc-17-3137-2023
container_title The Cryosphere
container_volume 17
container_issue 8
container_start_page 3137
op_container_end_page 3156
_version_ 1802650659431907328
spelling ftmeteofrance:oai:HAL:hal-04178023v1 2024-06-23T07:57:10+00:00 Monitoring snow water equivalent using the phase of RFID signals Suivi de l'équivalent en eau du manteau neigeux, en utilisant la phase de signaux RFID Le Breton, Mathieu Larose, Éric Baillet, Laurent Lejeune, Yves van Herwijnen, Alec Groupe Géolithe Institut des Sciences de la Terre (ISTerre) Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-Université Grenoble Alpes (UGA) Centre d'Etudes de la Neige (CEN) Centre national de recherches météorologiques (CNRM) Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ) Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA) SLF Institut pour l'étude de la neige et des avalanches (SLF) SLF Géolithe Innov ANR-17-LCV2-0007,GEO3I LAB,Laboratoire Innovation en Géophysique, Géomécanique, Géotechnique(2017) 2023-08-04 https://hal.science/hal-04178023 https://hal.science/hal-04178023/document https://hal.science/hal-04178023/file/tc-17-3137-2023.pdf https://doi.org/10.5194/tc-17-3137-2023 en eng HAL CCSD Copernicus info:eu-repo/semantics/altIdentifier/doi/10.5194/tc-17-3137-2023 hal-04178023 https://hal.science/hal-04178023 https://hal.science/hal-04178023/document https://hal.science/hal-04178023/file/tc-17-3137-2023.pdf doi:10.5194/tc-17-3137-2023 http://creativecommons.org/licenses/by/ info:eu-repo/semantics/OpenAccess ISSN: 1994-0424 EISSN: 1994-0416 The Cryosphere https://hal.science/hal-04178023 The Cryosphere, 2023, 17 (8), pp.3137-3156. ⟨10.5194/tc-17-3137-2023⟩ https://tc.copernicus.org/articles/17/3137/2023/ [SDE]Environmental Sciences [SPI]Engineering Sciences [physics] info:eu-repo/semantics/article Journal articles 2023 ftmeteofrance https://doi.org/10.5194/tc-17-3137-2023 2024-06-03T23:55:14Z International audience The amount of water contained in a snowpack, known as snow water equivalent (SWE), is used to anticipate the amount of snowmelt that could supply hydroelectric power plants, fill water reservoirs, or sometimes cause flooding. This work introduces a wireless, non-destructive method for monitoring the SWE of a dry snowpack. The system is based on an array of low-cost passive radiofrequency identification (RFID) tags, placed under the snow and read at 865–868 MHz by a reader located above the snow. The SWE was deduced from the phase delay of the tag's backscattered response, which increases with the amount of snow traversed by the radiofrequency wave. Measurements taken in the laboratory, during snowfall events and over 4.5 months at the Col de Porte test field, were consistent with reference measurements of cosmic rays, precipitation and snow pits. SWE accuracy was ±18 kg m−2 throughout the season (averaged over three tags) and ±3 kg m−2 during dry snowfall events (averaged over data from two antennas and four or five tags). The overall uncertainty compared to snow weighing was ±10 % for snow density in the range 61–390 kg m−3. The main limitations observed were measurement bias caused by wet snow (biased data were discarded) and the need for phase unwrapping. The method has a number of advantages: it allows for continuous measurement (1 min sampling rate in dry snow), it can provide complementary measurement of tag temperature, it does not require the reception of external data, and it opens the way towards spatialized measurements. The results presented also demonstrate that RFID propagation-based sensing can remotely monitor the permittivity of a low-loss dielectric material with scientific-level accuracy. Article in Journal/Newspaper The Cryosphere Météo-France: HAL The Cryosphere 17 8 3137 3156