Fractional snow-covered area: scale-independent peak of winter parameterization
International audience Abstract. The spatial distribution of snow in the mountains is significantly influenced through interactions of topography with wind, precipitation, shortwave and longwave radiation, and avalanches that may relocate the accumulated snow. One of the most crucial model parameter...
Published in: | The Cryosphere |
---|---|
Main Authors: | , , , , , , , , |
Other Authors: | , , , , , , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2021
|
Subjects: | |
Online Access: | https://hal.science/hal-03237356 https://hal.science/hal-03237356/document https://hal.science/hal-03237356/file/tc-15-615-2021.pdf https://doi.org/10.5194/tc-15-615-2021 |
id |
ftmeteofrance:oai:HAL:hal-03237356v1 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
Météo-France: HAL |
op_collection_id |
ftmeteofrance |
language |
English |
topic |
[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces environment |
spellingShingle |
[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces environment Helbig, Nora Bühler, Yves Eberhard, Lucie Deschamps-Berger, César Gascoin, Simon Dumont, Marie Revuelto, Jesus Deems, Jeff Jonas, Tobias Fractional snow-covered area: scale-independent peak of winter parameterization |
topic_facet |
[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces environment |
description |
International audience Abstract. The spatial distribution of snow in the mountains is significantly influenced through interactions of topography with wind, precipitation, shortwave and longwave radiation, and avalanches that may relocate the accumulated snow. One of the most crucial model parameters for various applications such as weather forecasts, climate predictions and hydrological modeling is the fraction of the ground surface that is covered by snow, also called fractional snow-covered area (fSCA). While previous subgrid parameterizations for the spatial snow depth distribution and fSCA work well, performances were scale-dependent. Here, we were able to confirm a previously established empirical relationship of peak of winter parameterization for the standard deviation of snow depth σHS by evaluating it with 11 spatial snow depth data sets from 7 different geographic regions and snow climates with resolutions ranging from 0.1 to 3 m. An enhanced performance (mean percentage errors, MPE, decreased by 25 %) across all spatial scales ≥ 200 m was achieved by recalibrating and introducing a scale-dependency in the dominant scaling variables. Scale-dependent MPEs vary between −7 % and 3 % for σHS and between 0 % and 1 % for fSCA. We performed a scale- and region-dependent evaluation of the parameterizations to assess the potential performances with independent data sets. This evaluation revealed that for the majority of the regions, the MPEs mostly lie between ±10 % for σHS and between −1 % and 1.5 % for fSCA. This suggests that the new parameterizations perform similarly well in most geographical regions. |
author2 |
Institute for Snow and Avalanche Research SLF (WSL) Inst Snow & Avalanche Res SLF Centre d'études spatiales de la biosphère (CESBIO) Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) Centre national de recherches météorologiques (CNRM) Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS) Centre d'Etudes de la Neige (CEN) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG )-Université Grenoble Alpes (UGA) Université Grenoble Alpes (UGA) University of Colorado Boulder ANR-16-CE01-0006,EBONI,Dépot, devenir et impact des impuretés absorbantes dans le manteau neigeux(2016) |
format |
Article in Journal/Newspaper |
author |
Helbig, Nora Bühler, Yves Eberhard, Lucie Deschamps-Berger, César Gascoin, Simon Dumont, Marie Revuelto, Jesus Deems, Jeff Jonas, Tobias |
author_facet |
Helbig, Nora Bühler, Yves Eberhard, Lucie Deschamps-Berger, César Gascoin, Simon Dumont, Marie Revuelto, Jesus Deems, Jeff Jonas, Tobias |
author_sort |
Helbig, Nora |
title |
Fractional snow-covered area: scale-independent peak of winter parameterization |
title_short |
Fractional snow-covered area: scale-independent peak of winter parameterization |
title_full |
Fractional snow-covered area: scale-independent peak of winter parameterization |
title_fullStr |
Fractional snow-covered area: scale-independent peak of winter parameterization |
title_full_unstemmed |
Fractional snow-covered area: scale-independent peak of winter parameterization |
title_sort |
fractional snow-covered area: scale-independent peak of winter parameterization |
publisher |
HAL CCSD |
publishDate |
2021 |
url |
https://hal.science/hal-03237356 https://hal.science/hal-03237356/document https://hal.science/hal-03237356/file/tc-15-615-2021.pdf https://doi.org/10.5194/tc-15-615-2021 |
genre |
The Cryosphere |
genre_facet |
The Cryosphere |
op_source |
ISSN: 1994-0424 EISSN: 1994-0416 The Cryosphere https://hal.science/hal-03237356 The Cryosphere, 2021, 15 (2), pp.615-632. ⟨10.5194/tc-15-615-2021⟩ |
op_relation |
info:eu-repo/semantics/altIdentifier/doi/10.5194/tc-15-615-2021 hal-03237356 https://hal.science/hal-03237356 https://hal.science/hal-03237356/document https://hal.science/hal-03237356/file/tc-15-615-2021.pdf doi:10.5194/tc-15-615-2021 WOS: 000618706600002 |
op_rights |
http://creativecommons.org/licenses/by/ info:eu-repo/semantics/OpenAccess |
op_doi |
https://doi.org/10.5194/tc-15-615-2021 |
container_title |
The Cryosphere |
container_volume |
15 |
container_issue |
2 |
container_start_page |
615 |
op_container_end_page |
632 |
_version_ |
1810483353765281792 |
spelling |
ftmeteofrance:oai:HAL:hal-03237356v1 2024-09-15T18:38:58+00:00 Fractional snow-covered area: scale-independent peak of winter parameterization Helbig, Nora Bühler, Yves Eberhard, Lucie Deschamps-Berger, César Gascoin, Simon Dumont, Marie Revuelto, Jesus Deems, Jeff Jonas, Tobias Institute for Snow and Avalanche Research SLF (WSL) Inst Snow & Avalanche Res SLF Centre d'études spatiales de la biosphère (CESBIO) Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) Centre national de recherches météorologiques (CNRM) Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS) Centre d'Etudes de la Neige (CEN) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG )-Université Grenoble Alpes (UGA) Université Grenoble Alpes (UGA) University of Colorado Boulder ANR-16-CE01-0006,EBONI,Dépot, devenir et impact des impuretés absorbantes dans le manteau neigeux(2016) 2021 https://hal.science/hal-03237356 https://hal.science/hal-03237356/document https://hal.science/hal-03237356/file/tc-15-615-2021.pdf https://doi.org/10.5194/tc-15-615-2021 en eng HAL CCSD Copernicus info:eu-repo/semantics/altIdentifier/doi/10.5194/tc-15-615-2021 hal-03237356 https://hal.science/hal-03237356 https://hal.science/hal-03237356/document https://hal.science/hal-03237356/file/tc-15-615-2021.pdf doi:10.5194/tc-15-615-2021 WOS: 000618706600002 http://creativecommons.org/licenses/by/ info:eu-repo/semantics/OpenAccess ISSN: 1994-0424 EISSN: 1994-0416 The Cryosphere https://hal.science/hal-03237356 The Cryosphere, 2021, 15 (2), pp.615-632. ⟨10.5194/tc-15-615-2021⟩ [SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces environment info:eu-repo/semantics/article Journal articles 2021 ftmeteofrance https://doi.org/10.5194/tc-15-615-2021 2024-06-25T00:12:47Z International audience Abstract. The spatial distribution of snow in the mountains is significantly influenced through interactions of topography with wind, precipitation, shortwave and longwave radiation, and avalanches that may relocate the accumulated snow. One of the most crucial model parameters for various applications such as weather forecasts, climate predictions and hydrological modeling is the fraction of the ground surface that is covered by snow, also called fractional snow-covered area (fSCA). While previous subgrid parameterizations for the spatial snow depth distribution and fSCA work well, performances were scale-dependent. Here, we were able to confirm a previously established empirical relationship of peak of winter parameterization for the standard deviation of snow depth σHS by evaluating it with 11 spatial snow depth data sets from 7 different geographic regions and snow climates with resolutions ranging from 0.1 to 3 m. An enhanced performance (mean percentage errors, MPE, decreased by 25 %) across all spatial scales ≥ 200 m was achieved by recalibrating and introducing a scale-dependency in the dominant scaling variables. Scale-dependent MPEs vary between −7 % and 3 % for σHS and between 0 % and 1 % for fSCA. We performed a scale- and region-dependent evaluation of the parameterizations to assess the potential performances with independent data sets. This evaluation revealed that for the majority of the regions, the MPEs mostly lie between ±10 % for σHS and between −1 % and 1.5 % for fSCA. This suggests that the new parameterizations perform similarly well in most geographical regions. Article in Journal/Newspaper The Cryosphere Météo-France: HAL The Cryosphere 15 2 615 632 |