Multi-scale snowdrift-permitting modelling of mountain snowpack

International audience Abstract. The interaction of mountain terrain with meteorological processes causes substantial temporal and spatial variability in snow accumulation and ablation. Processes impacted by complex terrain include large-scale orographic enhancement of snowfall, small-scale processe...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: Vionnet, Vincent, Marsh, Christopher, Menounos, Brian, Gascoin, Simon, Wayand, Nicholas, Shea, Joseph, Mukherjee, Kriti, Pomeroy, John
Other Authors: University of Saskatchewan Saskatoon, Canada (U of S), Environment and Climate Change Canada (ECCC), University of Northern British Columbia Prince George (UNBC), Centre d'études spatiales de la biosphère (CESBIO), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2021
Subjects:
Online Access:https://hal.science/hal-03237350
https://hal.science/hal-03237350/document
https://hal.science/hal-03237350/file/tc-15-743-2021.pdf
https://doi.org/10.5194/tc-15-743-2021
id ftmeteofrance:oai:HAL:hal-03237350v1
record_format openpolar
institution Open Polar
collection Météo-France: HAL
op_collection_id ftmeteofrance
language English
topic [SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces
environment
spellingShingle [SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces
environment
Vionnet, Vincent
Marsh, Christopher
Menounos, Brian
Gascoin, Simon
Wayand, Nicholas
Shea, Joseph
Mukherjee, Kriti
Pomeroy, John
Multi-scale snowdrift-permitting modelling of mountain snowpack
topic_facet [SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces
environment
description International audience Abstract. The interaction of mountain terrain with meteorological processes causes substantial temporal and spatial variability in snow accumulation and ablation. Processes impacted by complex terrain include large-scale orographic enhancement of snowfall, small-scale processes such as gravitational and wind-induced transport of snow, and variability in the radiative balance such as through terrain shadowing. In this study, a multi-scale modelling approach is proposed to simulate the temporal and spatial evolution of high-mountain snowpacks. The multi-scale approach combines atmospheric data from a numerical weather prediction system at the kilometre scale with process-based downscaling techniques to drive the Canadian Hydrological Model (CHM) at spatial resolutions allowing for explicit snow redistribution modelling. CHM permits a variable spatial resolution by using the efficient terrain representation by unstructured triangular meshes. The model simulates processes such as radiation shadowing and irradiance to slopes, blowing-snow transport (saltation and suspension) and sublimation, avalanching, forest canopy interception and sublimation, and snowpack melt. Short-term, kilometre-scale atmospheric forecasts from Environment and Climate Change Canada's Global Environmental Multiscale Model through its High Resolution Deterministic Prediction System (HRDPS) drive CHM and are downscaled to the unstructured mesh scale. In particular, a new wind-downscaling strategy uses pre-computed wind fields from a mass-conserving wind model at 50 m resolution to perturb the mesoscale HRDPS wind and to account for the influence of topographic features on wind direction and speed. HRDPS-CHM was applied to simulate snow conditions down to 50 m resolution during winter 2017/2018 in a domain around the Kananaskis Valley (∼1000 km2) in the Canadian Rockies. Simulations were evaluated using high-resolution airborne light detection and ranging (lidar) snow depth data and snow persistence indexes derived from ...
author2 University of Saskatchewan Saskatoon, Canada (U of S)
Environment and Climate Change Canada (ECCC)
University of Northern British Columbia Prince George (UNBC)
Centre d'études spatiales de la biosphère (CESBIO)
Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
format Article in Journal/Newspaper
author Vionnet, Vincent
Marsh, Christopher
Menounos, Brian
Gascoin, Simon
Wayand, Nicholas
Shea, Joseph
Mukherjee, Kriti
Pomeroy, John
author_facet Vionnet, Vincent
Marsh, Christopher
Menounos, Brian
Gascoin, Simon
Wayand, Nicholas
Shea, Joseph
Mukherjee, Kriti
Pomeroy, John
author_sort Vionnet, Vincent
title Multi-scale snowdrift-permitting modelling of mountain snowpack
title_short Multi-scale snowdrift-permitting modelling of mountain snowpack
title_full Multi-scale snowdrift-permitting modelling of mountain snowpack
title_fullStr Multi-scale snowdrift-permitting modelling of mountain snowpack
title_full_unstemmed Multi-scale snowdrift-permitting modelling of mountain snowpack
title_sort multi-scale snowdrift-permitting modelling of mountain snowpack
publisher HAL CCSD
publishDate 2021
url https://hal.science/hal-03237350
https://hal.science/hal-03237350/document
https://hal.science/hal-03237350/file/tc-15-743-2021.pdf
https://doi.org/10.5194/tc-15-743-2021
genre The Cryosphere
genre_facet The Cryosphere
op_source ISSN: 1994-0424
EISSN: 1994-0416
The Cryosphere
https://hal.science/hal-03237350
The Cryosphere, 2021, 15 (2), pp.743-769. ⟨10.5194/tc-15-743-2021⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.5194/tc-15-743-2021
hal-03237350
https://hal.science/hal-03237350
https://hal.science/hal-03237350/document
https://hal.science/hal-03237350/file/tc-15-743-2021.pdf
doi:10.5194/tc-15-743-2021
WOS: 000620899500001
op_rights http://creativecommons.org/licenses/by/
info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.5194/tc-15-743-2021
container_title The Cryosphere
container_volume 15
container_issue 2
container_start_page 743
op_container_end_page 769
_version_ 1810483352153620480
spelling ftmeteofrance:oai:HAL:hal-03237350v1 2024-09-15T18:38:57+00:00 Multi-scale snowdrift-permitting modelling of mountain snowpack Vionnet, Vincent Marsh, Christopher Menounos, Brian Gascoin, Simon Wayand, Nicholas Shea, Joseph Mukherjee, Kriti Pomeroy, John University of Saskatchewan Saskatoon, Canada (U of S) Environment and Climate Change Canada (ECCC) University of Northern British Columbia Prince George (UNBC) Centre d'études spatiales de la biosphère (CESBIO) Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) 2021 https://hal.science/hal-03237350 https://hal.science/hal-03237350/document https://hal.science/hal-03237350/file/tc-15-743-2021.pdf https://doi.org/10.5194/tc-15-743-2021 en eng HAL CCSD Copernicus info:eu-repo/semantics/altIdentifier/doi/10.5194/tc-15-743-2021 hal-03237350 https://hal.science/hal-03237350 https://hal.science/hal-03237350/document https://hal.science/hal-03237350/file/tc-15-743-2021.pdf doi:10.5194/tc-15-743-2021 WOS: 000620899500001 http://creativecommons.org/licenses/by/ info:eu-repo/semantics/OpenAccess ISSN: 1994-0424 EISSN: 1994-0416 The Cryosphere https://hal.science/hal-03237350 The Cryosphere, 2021, 15 (2), pp.743-769. ⟨10.5194/tc-15-743-2021⟩ [SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces environment info:eu-repo/semantics/article Journal articles 2021 ftmeteofrance https://doi.org/10.5194/tc-15-743-2021 2024-06-25T00:12:47Z International audience Abstract. The interaction of mountain terrain with meteorological processes causes substantial temporal and spatial variability in snow accumulation and ablation. Processes impacted by complex terrain include large-scale orographic enhancement of snowfall, small-scale processes such as gravitational and wind-induced transport of snow, and variability in the radiative balance such as through terrain shadowing. In this study, a multi-scale modelling approach is proposed to simulate the temporal and spatial evolution of high-mountain snowpacks. The multi-scale approach combines atmospheric data from a numerical weather prediction system at the kilometre scale with process-based downscaling techniques to drive the Canadian Hydrological Model (CHM) at spatial resolutions allowing for explicit snow redistribution modelling. CHM permits a variable spatial resolution by using the efficient terrain representation by unstructured triangular meshes. The model simulates processes such as radiation shadowing and irradiance to slopes, blowing-snow transport (saltation and suspension) and sublimation, avalanching, forest canopy interception and sublimation, and snowpack melt. Short-term, kilometre-scale atmospheric forecasts from Environment and Climate Change Canada's Global Environmental Multiscale Model through its High Resolution Deterministic Prediction System (HRDPS) drive CHM and are downscaled to the unstructured mesh scale. In particular, a new wind-downscaling strategy uses pre-computed wind fields from a mass-conserving wind model at 50 m resolution to perturb the mesoscale HRDPS wind and to account for the influence of topographic features on wind direction and speed. HRDPS-CHM was applied to simulate snow conditions down to 50 m resolution during winter 2017/2018 in a domain around the Kananaskis Valley (∼1000 km2) in the Canadian Rockies. Simulations were evaluated using high-resolution airborne light detection and ranging (lidar) snow depth data and snow persistence indexes derived from ... Article in Journal/Newspaper The Cryosphere Météo-France: HAL The Cryosphere 15 2 743 769