Modelling atmospheric CO2 changes at geological time scales

International audience By trapping infrared radiation, atmospheric CO2 contributes significantly to the greenhouse warming of the planetary surface. Hence, it is thought to have played a key role in the evolution of the Earth's climate over geological time. The history of atmospheric CO2 is ava...

Full description

Bibliographic Details
Main Authors: François, Louis, Grard, Aline, Goddéris, Yves
Other Authors: Laboratoire de Physique Atmosphérique et Planétaire (LPAP), Université de Liège, Centre d'Étude et de Modélisation de l'Environnement (CEME), Laboratoire des Mécanismes et Transfert en Géologie (LMTG), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2005
Subjects:
CO2
Online Access:https://hal.science/hal-00167121
https://hal.science/hal-00167121/document
https://hal.science/hal-00167121/file/CG2005_M02_Abstract02.pdf
id ftmeteofrance:oai:HAL:hal-00167121v1
record_format openpolar
spelling ftmeteofrance:oai:HAL:hal-00167121v1 2024-09-15T18:12:02+00:00 Modelling atmospheric CO2 changes at geological time scales François, Louis Grard, Aline Goddéris, Yves Laboratoire de Physique Atmosphérique et Planétaire (LPAP) Université de Liège Centre d'Étude et de Modélisation de l'Environnement (CEME) Laboratoire des Mécanismes et Transfert en Géologie (LMTG) Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Observatoire Midi-Pyrénées (OMP) Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS) 2005-12-31 https://hal.science/hal-00167121 https://hal.science/hal-00167121/document https://hal.science/hal-00167121/file/CG2005_M02_Abstract02.pdf en eng HAL CCSD Association Carnets de Géologie hal-00167121 https://hal.science/hal-00167121 https://hal.science/hal-00167121/document https://hal.science/hal-00167121/file/CG2005_M02_Abstract02.pdf info:eu-repo/semantics/OpenAccess ISSN: 1765-2553 EISSN: 1634-0744 Carnets de Géologie / Notebooks on Geology https://hal.science/hal-00167121 Carnets de Géologie / Notebooks on Geology, 2005, CG2005 (M02/02), pp.11-14 atmosphere CO2 modelling carbon cycle climate geochemical cycle [SDU.STU.ST]Sciences of the Universe [physics]/Earth Sciences/Stratigraphy info:eu-repo/semantics/article Journal articles 2005 ftmeteofrance 2024-06-25T00:20:37Z International audience By trapping infrared radiation, atmospheric CO2 contributes significantly to the greenhouse warming of the planetary surface. Hence, it is thought to have played a key role in the evolution of the Earth's climate over geological time. The history of atmospheric CO2 is available only for the last few hundred thousand years from the analysis of the air trapped in cores of ice. Therefore, data regarding Pre-Pleistocene atmospheric CO2 must be derived from proxies. These provide indirect estimates of atmospheric CO2 and are much less reliable than ice-core data. The main proxies used to reconstruct atmospheric CO2 are: the 13C isotopic fractionation of marine organisms, the paleo-pH recorded in the boron isotopic composition of ancient carbonates, the stomatal density of fossil leaves and the 13C isotopic composition of paleosols. For Paleozoic times paleosols have been the main source of data but these are generally rather imprecise. Consequently, for this period geochemical models are useful to make first order estimates of atmospheric CO2 levels, as well as to help explain its temporal variation. Such models describe the geochemical cycles of several elements - the core being the carbon cycle - by writing budget equations for these elements in the framework of box models. They are often constrained by isotopic data. In the following we first summarize the basic principles of these models and then illustrate two applications: (1) changes in Paleozoic atmospheric CO2 and (2) changes in the carbon cycle across the Permo-Triassic boundary. Article in Journal/Newspaper ice core Météo-France: HAL
institution Open Polar
collection Météo-France: HAL
op_collection_id ftmeteofrance
language English
topic atmosphere
CO2
modelling
carbon cycle
climate
geochemical cycle
[SDU.STU.ST]Sciences of the Universe [physics]/Earth Sciences/Stratigraphy
spellingShingle atmosphere
CO2
modelling
carbon cycle
climate
geochemical cycle
[SDU.STU.ST]Sciences of the Universe [physics]/Earth Sciences/Stratigraphy
François, Louis
Grard, Aline
Goddéris, Yves
Modelling atmospheric CO2 changes at geological time scales
topic_facet atmosphere
CO2
modelling
carbon cycle
climate
geochemical cycle
[SDU.STU.ST]Sciences of the Universe [physics]/Earth Sciences/Stratigraphy
description International audience By trapping infrared radiation, atmospheric CO2 contributes significantly to the greenhouse warming of the planetary surface. Hence, it is thought to have played a key role in the evolution of the Earth's climate over geological time. The history of atmospheric CO2 is available only for the last few hundred thousand years from the analysis of the air trapped in cores of ice. Therefore, data regarding Pre-Pleistocene atmospheric CO2 must be derived from proxies. These provide indirect estimates of atmospheric CO2 and are much less reliable than ice-core data. The main proxies used to reconstruct atmospheric CO2 are: the 13C isotopic fractionation of marine organisms, the paleo-pH recorded in the boron isotopic composition of ancient carbonates, the stomatal density of fossil leaves and the 13C isotopic composition of paleosols. For Paleozoic times paleosols have been the main source of data but these are generally rather imprecise. Consequently, for this period geochemical models are useful to make first order estimates of atmospheric CO2 levels, as well as to help explain its temporal variation. Such models describe the geochemical cycles of several elements - the core being the carbon cycle - by writing budget equations for these elements in the framework of box models. They are often constrained by isotopic data. In the following we first summarize the basic principles of these models and then illustrate two applications: (1) changes in Paleozoic atmospheric CO2 and (2) changes in the carbon cycle across the Permo-Triassic boundary.
author2 Laboratoire de Physique Atmosphérique et Planétaire (LPAP)
Université de Liège
Centre d'Étude et de Modélisation de l'Environnement (CEME)
Laboratoire des Mécanismes et Transfert en Géologie (LMTG)
Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université de Toulouse (UT)-Observatoire Midi-Pyrénées (OMP)
Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)
format Article in Journal/Newspaper
author François, Louis
Grard, Aline
Goddéris, Yves
author_facet François, Louis
Grard, Aline
Goddéris, Yves
author_sort François, Louis
title Modelling atmospheric CO2 changes at geological time scales
title_short Modelling atmospheric CO2 changes at geological time scales
title_full Modelling atmospheric CO2 changes at geological time scales
title_fullStr Modelling atmospheric CO2 changes at geological time scales
title_full_unstemmed Modelling atmospheric CO2 changes at geological time scales
title_sort modelling atmospheric co2 changes at geological time scales
publisher HAL CCSD
publishDate 2005
url https://hal.science/hal-00167121
https://hal.science/hal-00167121/document
https://hal.science/hal-00167121/file/CG2005_M02_Abstract02.pdf
genre ice core
genre_facet ice core
op_source ISSN: 1765-2553
EISSN: 1634-0744
Carnets de Géologie / Notebooks on Geology
https://hal.science/hal-00167121
Carnets de Géologie / Notebooks on Geology, 2005, CG2005 (M02/02), pp.11-14
op_relation hal-00167121
https://hal.science/hal-00167121
https://hal.science/hal-00167121/document
https://hal.science/hal-00167121/file/CG2005_M02_Abstract02.pdf
op_rights info:eu-repo/semantics/OpenAccess
_version_ 1810449632552026112