Changing treelines : how variability in scale and approach improve our understanding

With treeline position expected to expand northward, and upward, with climate change, there is increased attention towards understanding the mechanisms that control these patterns. Using a regional and broad scale approach, treeline dynamics, disturbance and response to recent climate warming were e...

Full description

Bibliographic Details
Main Author: Trant, Andrew J.
Format: Thesis
Language:English
Published: Memorial University of Newfoundland 2013
Subjects:
Online Access:https://research.library.mun.ca/9830/
https://research.library.mun.ca/9830/1/Trant_AndrewJohn.pdf
Description
Summary:With treeline position expected to expand northward, and upward, with climate change, there is increased attention towards understanding the mechanisms that control these patterns. Using a regional and broad scale approach, treeline dynamics, disturbance and response to recent climate warming were explored along an altitudinal gradient in the Mealy Mountains, Labrador (Canada), and across the circumpolar subarctic. To complement the western science approach to understanding climate change, a critique of modules taught to the Innu Guardians will be presented. At a regional scale in the Mealy Mountains, treeline dynamics over the past few centuries showed species-specific differences in when treeline was established and the relative rates of subsequent infilling and mortality. All tree species showed increased variability in recruitment correlations to climate across the treeline ecotone with black spruce (Picea mariana) showing consistently positive correlations, while larch (Larix laricina) shifted from strongly positive to negative and white spruce (Picea glauca) showing consistently negative correlations. Long-lived black spruce krummholz also showed significant recent increases in radial growth. Disturbance at treeline resulted in characteristic gap dynamics with low-levels of tree mortality attributed to porcupine (Erethizon dorsatum) herbivory and small-scale outbreaks of spruce budworm (Choristoneura fumiferana) and larch sawfly (Pristiphora erichsonii). These outbreaks occurred at lower magnitudes than observed in other parts of the boreal forest due to decreased tree density, supporting the Resource Concentration Hypothesis. Canopy gaps associated with windthrow did not have significantly different canopy structures but seedling densities of larch and black spruce, were significantly higher in exposed soil associated with windthrow disturbance. At broader spatial scales across circumpolar treeline, growth form and advancement were not significantly related to the extent of site warming but rather ...