Modeling and plume tracking study of a Newfoundland coastal outfall

Marine pollution is a serious environmental problem facing many industrialized and developing countries. It has short-term and long-term impacts on the ecological systems, human health, and economy. These impacts can be minimized through proper offshore and coastal zone management, continuous monito...

Full description

Bibliographic Details
Main Author: Shanaa, Jihad
Format: Thesis
Language:English
Published: Memorial University of Newfoundland 2008
Subjects:
Online Access:https://research.library.mun.ca/9234/
https://research.library.mun.ca/9234/1/Shanaa_Jihad.pdf
id ftmemorialuniv:oai:research.library.mun.ca:9234
record_format openpolar
spelling ftmemorialuniv:oai:research.library.mun.ca:9234 2023-10-01T03:57:38+02:00 Modeling and plume tracking study of a Newfoundland coastal outfall Shanaa, Jihad 2008 application/pdf https://research.library.mun.ca/9234/ https://research.library.mun.ca/9234/1/Shanaa_Jihad.pdf en eng Memorial University of Newfoundland https://research.library.mun.ca/9234/1/Shanaa_Jihad.pdf Shanaa, Jihad <https://research.library.mun.ca/view/creator_az/Shanaa=3AJihad=3A=3A.html> (2008) Modeling and plume tracking study of a Newfoundland coastal outfall. Masters thesis, Memorial University of Newfoundland. thesis_license Thesis NonPeerReviewed 2008 ftmemorialuniv 2023-09-03T06:47:19Z Marine pollution is a serious environmental problem facing many industrialized and developing countries. It has short-term and long-term impacts on the ecological systems, human health, and economy. These impacts can be minimized through proper offshore and coastal zone management, continuous monitoring, and enforcement of regulations. Outfall disposal can be an effective environmental and economical method for discharging treated industrial and municipal effluents to the marine environment. This is because the dynamic nature of the ocean can enhance the dilution process of the effluent. However, if the outfall is not properly designed and monitored, it may have negative impacts on the marine biota and public health. Well designed outfalls result to better effluent mixing within the ambient water. -- In this work, the performance of an existing staged diffuser outfall design, at Spaniard's Bay, was evaluated using the Cornell Mixing Zone Expert Model (CORMIX) length scale model and compared with an alternative T-Shape riser design using Roberts, Snyder and Baumgartner (RSB) length scale model. The existing staged outfall design provided a better near-field dilution than the T-Shape riser for shallow coastal waters. For model validation and water quality assessment, an environmental monitoring experiment was carried out around the Spaniard's Bay outfall. An Autonomous Underwater Vehicle (AUV) and towed sensor platforms were used for monitoring salinity, temperature, turbidity, chlorophyll a, and dissolved oxygen. The data were statistically analyzed and mapped for plume tracking and water column assessment purposes. Turbidity and salinity observations were investigated as a natural tracer of the effluent. The turbidity values were decreasing while moving from the effluent boil to a downstream direction. The salinity variations were also decreasing while moving from the outfall to a downstream direction. The low salinity and high turbidity results of more than 13000 in-situ observations were positively correlated. ... Thesis Newfoundland Memorial University of Newfoundland: Research Repository Snyder ENVELOPE(-121.386,-121.386,56.917,56.917)
institution Open Polar
collection Memorial University of Newfoundland: Research Repository
op_collection_id ftmemorialuniv
language English
description Marine pollution is a serious environmental problem facing many industrialized and developing countries. It has short-term and long-term impacts on the ecological systems, human health, and economy. These impacts can be minimized through proper offshore and coastal zone management, continuous monitoring, and enforcement of regulations. Outfall disposal can be an effective environmental and economical method for discharging treated industrial and municipal effluents to the marine environment. This is because the dynamic nature of the ocean can enhance the dilution process of the effluent. However, if the outfall is not properly designed and monitored, it may have negative impacts on the marine biota and public health. Well designed outfalls result to better effluent mixing within the ambient water. -- In this work, the performance of an existing staged diffuser outfall design, at Spaniard's Bay, was evaluated using the Cornell Mixing Zone Expert Model (CORMIX) length scale model and compared with an alternative T-Shape riser design using Roberts, Snyder and Baumgartner (RSB) length scale model. The existing staged outfall design provided a better near-field dilution than the T-Shape riser for shallow coastal waters. For model validation and water quality assessment, an environmental monitoring experiment was carried out around the Spaniard's Bay outfall. An Autonomous Underwater Vehicle (AUV) and towed sensor platforms were used for monitoring salinity, temperature, turbidity, chlorophyll a, and dissolved oxygen. The data were statistically analyzed and mapped for plume tracking and water column assessment purposes. Turbidity and salinity observations were investigated as a natural tracer of the effluent. The turbidity values were decreasing while moving from the effluent boil to a downstream direction. The salinity variations were also decreasing while moving from the outfall to a downstream direction. The low salinity and high turbidity results of more than 13000 in-situ observations were positively correlated. ...
format Thesis
author Shanaa, Jihad
spellingShingle Shanaa, Jihad
Modeling and plume tracking study of a Newfoundland coastal outfall
author_facet Shanaa, Jihad
author_sort Shanaa, Jihad
title Modeling and plume tracking study of a Newfoundland coastal outfall
title_short Modeling and plume tracking study of a Newfoundland coastal outfall
title_full Modeling and plume tracking study of a Newfoundland coastal outfall
title_fullStr Modeling and plume tracking study of a Newfoundland coastal outfall
title_full_unstemmed Modeling and plume tracking study of a Newfoundland coastal outfall
title_sort modeling and plume tracking study of a newfoundland coastal outfall
publisher Memorial University of Newfoundland
publishDate 2008
url https://research.library.mun.ca/9234/
https://research.library.mun.ca/9234/1/Shanaa_Jihad.pdf
long_lat ENVELOPE(-121.386,-121.386,56.917,56.917)
geographic Snyder
geographic_facet Snyder
genre Newfoundland
genre_facet Newfoundland
op_relation https://research.library.mun.ca/9234/1/Shanaa_Jihad.pdf
Shanaa, Jihad <https://research.library.mun.ca/view/creator_az/Shanaa=3AJihad=3A=3A.html> (2008) Modeling and plume tracking study of a Newfoundland coastal outfall. Masters thesis, Memorial University of Newfoundland.
op_rights thesis_license
_version_ 1778529474415951872