Developing a fundamental understanding of how oil impacts diagenesis and the effect in transport properties by investigating rock samples from close to the oil-water contact, Ben Nevis formation, Hebron field.

There is ongoing debate as to whether or not oil emplacement in a reservoir rock impedes or stops diagenetic process. The Ben Nevis reservoir in the Hebron Field, offshore Newfoundland has a short transition zone and a clearly identified oil-water contact (OWC). Rock samples from above and below the...

Full description

Bibliographic Details
Main Author: Mujica, Francis
Format: Thesis
Language:English
Published: Memorial University of Newfoundland 2019
Subjects:
Online Access:https://research.library.mun.ca/14321/
https://research.library.mun.ca/14321/1/Mujica%20thesis%20.pdf
id ftmemorialuniv:oai:research.library.mun.ca:14321
record_format openpolar
spelling ftmemorialuniv:oai:research.library.mun.ca:14321 2023-10-01T03:57:38+02:00 Developing a fundamental understanding of how oil impacts diagenesis and the effect in transport properties by investigating rock samples from close to the oil-water contact, Ben Nevis formation, Hebron field. Mujica, Francis 2019-08 application/pdf https://research.library.mun.ca/14321/ https://research.library.mun.ca/14321/1/Mujica%20thesis%20.pdf en eng Memorial University of Newfoundland https://research.library.mun.ca/14321/1/Mujica%20thesis%20.pdf Mujica, Francis <https://research.library.mun.ca/view/creator_az/Mujica=3AFrancis=3A=3A.html> (2019) Developing a fundamental understanding of how oil impacts diagenesis and the effect in transport properties by investigating rock samples from close to the oil-water contact, Ben Nevis formation, Hebron field. Masters thesis, Memorial University of Newfoundland. thesis_license Thesis NonPeerReviewed 2019 ftmemorialuniv 2023-09-03T06:49:41Z There is ongoing debate as to whether or not oil emplacement in a reservoir rock impedes or stops diagenetic process. The Ben Nevis reservoir in the Hebron Field, offshore Newfoundland has a short transition zone and a clearly identified oil-water contact (OWC). Rock samples from above and below the OWC were used to analyse the role of oil emplacement in the diagenetic processes, with the main focus on quartz overgrowth and its impact on transport properties. The main contributions of this work is that we challenge the debate on whether or not oil emplacement impacts diagenesis for the Hebron Field, a relatively shallow, low temperature reservoir (< 2 km depth, 50-70 °C) using pore size distribution instead of a singular porosity value, and digital rock analysis for the transport properties. Core analysis includes scanning electron microscopy, mineral liberation analysis, cathode-luminescence, mercury injection capillary pressure (MICP), microcomputed tomography scans, and digital rock analysis and simulations. Our results suggest that quartz cement tends to be more abundant towards the water leg. This observation is in agreement with the “oil emplacement retards diagenesis” theory discussed in the literature. Despite differences in quartz overgrowth, the pore size distributions (MICP results) and digital rock images do not reveal any significant differences in the pore structures above and below the OWC. This could indicate that the differences in quartz overgrowth is not substantial enough to cause a significant reduction of the pore size, and thereby impact transport properties. Thesis Newfoundland Memorial University of Newfoundland: Research Repository Ben Nevis ENVELOPE(12.417,12.417,79.650,79.650) Hebron ENVELOPE(-62.631,-62.631,58.200,58.200)
institution Open Polar
collection Memorial University of Newfoundland: Research Repository
op_collection_id ftmemorialuniv
language English
description There is ongoing debate as to whether or not oil emplacement in a reservoir rock impedes or stops diagenetic process. The Ben Nevis reservoir in the Hebron Field, offshore Newfoundland has a short transition zone and a clearly identified oil-water contact (OWC). Rock samples from above and below the OWC were used to analyse the role of oil emplacement in the diagenetic processes, with the main focus on quartz overgrowth and its impact on transport properties. The main contributions of this work is that we challenge the debate on whether or not oil emplacement impacts diagenesis for the Hebron Field, a relatively shallow, low temperature reservoir (< 2 km depth, 50-70 °C) using pore size distribution instead of a singular porosity value, and digital rock analysis for the transport properties. Core analysis includes scanning electron microscopy, mineral liberation analysis, cathode-luminescence, mercury injection capillary pressure (MICP), microcomputed tomography scans, and digital rock analysis and simulations. Our results suggest that quartz cement tends to be more abundant towards the water leg. This observation is in agreement with the “oil emplacement retards diagenesis” theory discussed in the literature. Despite differences in quartz overgrowth, the pore size distributions (MICP results) and digital rock images do not reveal any significant differences in the pore structures above and below the OWC. This could indicate that the differences in quartz overgrowth is not substantial enough to cause a significant reduction of the pore size, and thereby impact transport properties.
format Thesis
author Mujica, Francis
spellingShingle Mujica, Francis
Developing a fundamental understanding of how oil impacts diagenesis and the effect in transport properties by investigating rock samples from close to the oil-water contact, Ben Nevis formation, Hebron field.
author_facet Mujica, Francis
author_sort Mujica, Francis
title Developing a fundamental understanding of how oil impacts diagenesis and the effect in transport properties by investigating rock samples from close to the oil-water contact, Ben Nevis formation, Hebron field.
title_short Developing a fundamental understanding of how oil impacts diagenesis and the effect in transport properties by investigating rock samples from close to the oil-water contact, Ben Nevis formation, Hebron field.
title_full Developing a fundamental understanding of how oil impacts diagenesis and the effect in transport properties by investigating rock samples from close to the oil-water contact, Ben Nevis formation, Hebron field.
title_fullStr Developing a fundamental understanding of how oil impacts diagenesis and the effect in transport properties by investigating rock samples from close to the oil-water contact, Ben Nevis formation, Hebron field.
title_full_unstemmed Developing a fundamental understanding of how oil impacts diagenesis and the effect in transport properties by investigating rock samples from close to the oil-water contact, Ben Nevis formation, Hebron field.
title_sort developing a fundamental understanding of how oil impacts diagenesis and the effect in transport properties by investigating rock samples from close to the oil-water contact, ben nevis formation, hebron field.
publisher Memorial University of Newfoundland
publishDate 2019
url https://research.library.mun.ca/14321/
https://research.library.mun.ca/14321/1/Mujica%20thesis%20.pdf
long_lat ENVELOPE(12.417,12.417,79.650,79.650)
ENVELOPE(-62.631,-62.631,58.200,58.200)
geographic Ben Nevis
Hebron
geographic_facet Ben Nevis
Hebron
genre Newfoundland
genre_facet Newfoundland
op_relation https://research.library.mun.ca/14321/1/Mujica%20thesis%20.pdf
Mujica, Francis <https://research.library.mun.ca/view/creator_az/Mujica=3AFrancis=3A=3A.html> (2019) Developing a fundamental understanding of how oil impacts diagenesis and the effect in transport properties by investigating rock samples from close to the oil-water contact, Ben Nevis formation, Hebron field. Masters thesis, Memorial University of Newfoundland.
op_rights thesis_license
_version_ 1778529457798119424