Regionally-Coherent Embayment Rotation: Behavioural Response to Bi-Directional Waves and Atmospheric Forcing

Bi-directional wave climates often drive beach rotation, increasing erosional risk at semi-sheltered locations. Identification of rotation and forcing mechanisms is vital to future coastal defence. In this study, regional investigation of modelled wave data revealed strong bi-directionality between...

Full description

Bibliographic Details
Published in:Journal of Marine Science and Engineering
Main Authors: Mark Wiggins, Tim Scott, Gerd Masselink, Paul Russell, Nieves G. Valiente
Format: Text
Language:English
Published: Multidisciplinary Digital Publishing Institute 2019
Subjects:
NAO
Online Access:https://doi.org/10.3390/jmse7040116
Description
Summary:Bi-directional wave climates often drive beach rotation, increasing erosional risk at semi-sheltered locations. Identification of rotation and forcing mechanisms is vital to future coastal defence. In this study, regional investigation of modelled wave data revealed strong bi-directionality between dominant south-westerly and sub-dominant easterly waves for 14 offshore locations along the length of the south coast of England, U.K. South-westerly wave power was well correlated to positive phases of the West Europe Pressure Anomaly (WEPA), whilst easterly wave power was well correlated with negative phases of the North Atlantic Oscillation (NAO). Additionally, decadal records of beach morphological change and associated wave forcing, were investigated for 22 coastal sites across the same region. Significant rotational behaviour was identified at 11 sites, leading to the creation of a rotation index. Beach rotation was attributed to shoreline angle, with the strongest rotation occurring at south-east-facing beaches, with high obliquity to dominant south-westerly waves. The beach rotation index was well correlated with the normalized balance of wave power from opposing south-westerly and easterly directions. Direct correlations between beach rotation and WEPA at two sites showed that future forecasts of atmospheric indices may allow prediction of rotational beach state, at seasonal scales.