A Novel Cooperative Controller for Inverters of Smart Hybrid AC/DC Microgrids
This paper presents a novel cooperative control technique concerning fully-distributed AC/DC microgrids. Distributed generation based on inverters has two types, i.e., Current Source Inverter (CSI), also referred to as PQ inverter, and Voltage Source Inverter (VSI). Both inverter forms have a two-la...
Published in: | Applied Sciences |
---|---|
Main Authors: | , , , |
Format: | Text |
Language: | English |
Published: |
Multidisciplinary Digital Publishing Institute
2020
|
Subjects: | |
Online Access: | https://doi.org/10.3390/app10176120 |
_version_ | 1821506896550428672 |
---|---|
author | Bilal Naji Alhasnawi Basil H. Jasim Walid Issa M. Dolores Esteban |
author_facet | Bilal Naji Alhasnawi Basil H. Jasim Walid Issa M. Dolores Esteban |
author_sort | Bilal Naji Alhasnawi |
collection | MDPI Open Access Publishing |
container_issue | 17 |
container_start_page | 6120 |
container_title | Applied Sciences |
container_volume | 10 |
description | This paper presents a novel cooperative control technique concerning fully-distributed AC/DC microgrids. Distributed generation based on inverters has two types, i.e., Current Source Inverter (CSI), also referred to as PQ inverter, and Voltage Source Inverter (VSI). Both inverter forms have a two-layer coordination mechanism. This paper proposes a design method for the digital Proportional-Resonant (PR) controller that regulates the current inside an inverter. The inverters will improve the voltage quality of the microgrid while maintaining the average voltage of buses at the same desired level. There is comprehensive detail on the computations specific to resonant and proportional gains and digital resonance path coefficients. The paper includes a digital PR controller design and its analysis in the frequency domain. The analysis is based on the w-domain. The main contribution of this paper is the proposed method, which not only focuses on the transient response but also improves the steady-state response which smoothens the voltage; furthermore, all inverters are effectively involved to increase the capacity of the microgrid for better power management. The suggested cooperative control technique is used on an IEEE 14-bus system having fully distributed communication. The convincing outcomes indicate that the suggested control technique is an effectual means of regulating the microgrid’s voltage to obtain an evener and steady voltage profile. The microgrid comprises distributed resources and is used as the primary element to analyse power flow and quality indicators associated with a smart grid. Lastly, numerical simulation observations are utilised for substantiating the recommended algorithm. |
format | Text |
genre | evener |
genre_facet | evener |
id | ftmdpi:oai:mdpi.com:/2076-3417/10/17/6120/ |
institution | Open Polar |
language | English |
op_collection_id | ftmdpi |
op_coverage | agris |
op_doi | https://doi.org/10.3390/app10176120 |
op_relation | Environmental Sciences https://dx.doi.org/10.3390/app10176120 |
op_rights | https://creativecommons.org/licenses/by/4.0/ |
op_source | Applied Sciences; Volume 10; Issue 17; Pages: 6120 |
publishDate | 2020 |
publisher | Multidisciplinary Digital Publishing Institute |
record_format | openpolar |
spelling | ftmdpi:oai:mdpi.com:/2076-3417/10/17/6120/ 2025-01-16T21:47:09+00:00 A Novel Cooperative Controller for Inverters of Smart Hybrid AC/DC Microgrids Bilal Naji Alhasnawi Basil H. Jasim Walid Issa M. Dolores Esteban agris 2020-09-03 application/pdf https://doi.org/10.3390/app10176120 EN eng Multidisciplinary Digital Publishing Institute Environmental Sciences https://dx.doi.org/10.3390/app10176120 https://creativecommons.org/licenses/by/4.0/ Applied Sciences; Volume 10; Issue 17; Pages: 6120 IEEE 14-bus microgrid converters proportional resonant controller notch filters inverters Text 2020 ftmdpi https://doi.org/10.3390/app10176120 2023-08-01T00:02:19Z This paper presents a novel cooperative control technique concerning fully-distributed AC/DC microgrids. Distributed generation based on inverters has two types, i.e., Current Source Inverter (CSI), also referred to as PQ inverter, and Voltage Source Inverter (VSI). Both inverter forms have a two-layer coordination mechanism. This paper proposes a design method for the digital Proportional-Resonant (PR) controller that regulates the current inside an inverter. The inverters will improve the voltage quality of the microgrid while maintaining the average voltage of buses at the same desired level. There is comprehensive detail on the computations specific to resonant and proportional gains and digital resonance path coefficients. The paper includes a digital PR controller design and its analysis in the frequency domain. The analysis is based on the w-domain. The main contribution of this paper is the proposed method, which not only focuses on the transient response but also improves the steady-state response which smoothens the voltage; furthermore, all inverters are effectively involved to increase the capacity of the microgrid for better power management. The suggested cooperative control technique is used on an IEEE 14-bus system having fully distributed communication. The convincing outcomes indicate that the suggested control technique is an effectual means of regulating the microgrid’s voltage to obtain an evener and steady voltage profile. The microgrid comprises distributed resources and is used as the primary element to analyse power flow and quality indicators associated with a smart grid. Lastly, numerical simulation observations are utilised for substantiating the recommended algorithm. Text evener MDPI Open Access Publishing Applied Sciences 10 17 6120 |
spellingShingle | IEEE 14-bus microgrid converters proportional resonant controller notch filters inverters Bilal Naji Alhasnawi Basil H. Jasim Walid Issa M. Dolores Esteban A Novel Cooperative Controller for Inverters of Smart Hybrid AC/DC Microgrids |
title | A Novel Cooperative Controller for Inverters of Smart Hybrid AC/DC Microgrids |
title_full | A Novel Cooperative Controller for Inverters of Smart Hybrid AC/DC Microgrids |
title_fullStr | A Novel Cooperative Controller for Inverters of Smart Hybrid AC/DC Microgrids |
title_full_unstemmed | A Novel Cooperative Controller for Inverters of Smart Hybrid AC/DC Microgrids |
title_short | A Novel Cooperative Controller for Inverters of Smart Hybrid AC/DC Microgrids |
title_sort | novel cooperative controller for inverters of smart hybrid ac/dc microgrids |
topic | IEEE 14-bus microgrid converters proportional resonant controller notch filters inverters |
topic_facet | IEEE 14-bus microgrid converters proportional resonant controller notch filters inverters |
url | https://doi.org/10.3390/app10176120 |