The Effects of Perchlorates on the Permafrost Methanogens: Implication for Autotrophic Life on Mars
The terrestrial permafrost represents a range of possible cryogenic extraterrestrial ecosystems on Earth-like planets without obvious surface ice, such as Mars. The autotrophic and chemolithotrophic psychrotolerant methanogens are more likely than aerobes to function as a model for life forms that m...
Published in: | Microorganisms |
---|---|
Main Authors: | , , |
Format: | Text |
Language: | English |
Published: |
Multidisciplinary Digital Publishing Institute
2015
|
Subjects: | |
Online Access: | https://doi.org/10.3390/microorganisms3030518 |
_version_ | 1821538865326850048 |
---|---|
author | Viktoria Shcherbakova Viktoria Oshurkova Yoshitaka Yoshimura |
author_facet | Viktoria Shcherbakova Viktoria Oshurkova Yoshitaka Yoshimura |
author_sort | Viktoria Shcherbakova |
collection | MDPI Open Access Publishing |
container_issue | 3 |
container_start_page | 518 |
container_title | Microorganisms |
container_volume | 3 |
description | The terrestrial permafrost represents a range of possible cryogenic extraterrestrial ecosystems on Earth-like planets without obvious surface ice, such as Mars. The autotrophic and chemolithotrophic psychrotolerant methanogens are more likely than aerobes to function as a model for life forms that may exist in frozen subsurface environments on Mars, which has no free oxygen, inaccessible organic matter, and extremely low amounts of unfrozen water. Our research on the genesis of methane, its content and distribution in permafrost horizons of different ages and origin demonstrated the presence of methane in permanently frozen fine-grained sediments. Earlier, we isolated and described four strains of methanogenic archaea of Methanobacterium and Methanosarcina genera from samples of Pliocene and Holocene permafrost from Eastern Siberia. In this paper we study the effect of sodium and magnesium perchlorates on growth of permafrost and nonpermafrost methanogens, and present evidence that permafrost hydogenotrophic methanogens are more resistant to the chaotropic agent found in Martian soil. In this paper we study the effect of sodium and magnesium perchlorates on the growth of permafrost and nonpermafrost methanogens, and present evidence that permafrost hydogenotrophic methanogens are more resistant to the chaotropic agent found in Martian soil. Furthermore, as shown in the studies strain M2T M. arcticum, probably can use perchlorate anion as an electron acceptor in anaerobic methane oxidation. Earth’s subzero subsurface environments are the best approximation of environments on Mars, which is most likely to harbor methanogens; thus, a biochemical understanding of these pathways is expected to provide a basis for designing experiments to detect autotrophic methane-producing life forms on Mars. |
format | Text |
genre | Ice permafrost Siberia |
genre_facet | Ice permafrost Siberia |
id | ftmdpi:oai:mdpi.com:/2076-2607/3/3/518/ |
institution | Open Polar |
language | English |
op_collection_id | ftmdpi |
op_container_end_page | 534 |
op_coverage | agris |
op_doi | https://doi.org/10.3390/microorganisms3030518 |
op_relation | Environmental Microbiology https://dx.doi.org/10.3390/microorganisms3030518 |
op_rights | https://creativecommons.org/licenses/by/4.0/ |
op_source | Microorganisms; Volume 3; Issue 3; Pages: 518-534 |
publishDate | 2015 |
publisher | Multidisciplinary Digital Publishing Institute |
record_format | openpolar |
spelling | ftmdpi:oai:mdpi.com:/2076-2607/3/3/518/ 2025-01-16T22:21:41+00:00 The Effects of Perchlorates on the Permafrost Methanogens: Implication for Autotrophic Life on Mars Viktoria Shcherbakova Viktoria Oshurkova Yoshitaka Yoshimura agris 2015-09-09 application/pdf https://doi.org/10.3390/microorganisms3030518 EN eng Multidisciplinary Digital Publishing Institute Environmental Microbiology https://dx.doi.org/10.3390/microorganisms3030518 https://creativecommons.org/licenses/by/4.0/ Microorganisms; Volume 3; Issue 3; Pages: 518-534 permafrost Mars methanogenic archaea perchlorates Text 2015 ftmdpi https://doi.org/10.3390/microorganisms3030518 2023-07-31T20:46:24Z The terrestrial permafrost represents a range of possible cryogenic extraterrestrial ecosystems on Earth-like planets without obvious surface ice, such as Mars. The autotrophic and chemolithotrophic psychrotolerant methanogens are more likely than aerobes to function as a model for life forms that may exist in frozen subsurface environments on Mars, which has no free oxygen, inaccessible organic matter, and extremely low amounts of unfrozen water. Our research on the genesis of methane, its content and distribution in permafrost horizons of different ages and origin demonstrated the presence of methane in permanently frozen fine-grained sediments. Earlier, we isolated and described four strains of methanogenic archaea of Methanobacterium and Methanosarcina genera from samples of Pliocene and Holocene permafrost from Eastern Siberia. In this paper we study the effect of sodium and magnesium perchlorates on growth of permafrost and nonpermafrost methanogens, and present evidence that permafrost hydogenotrophic methanogens are more resistant to the chaotropic agent found in Martian soil. In this paper we study the effect of sodium and magnesium perchlorates on the growth of permafrost and nonpermafrost methanogens, and present evidence that permafrost hydogenotrophic methanogens are more resistant to the chaotropic agent found in Martian soil. Furthermore, as shown in the studies strain M2T M. arcticum, probably can use perchlorate anion as an electron acceptor in anaerobic methane oxidation. Earth’s subzero subsurface environments are the best approximation of environments on Mars, which is most likely to harbor methanogens; thus, a biochemical understanding of these pathways is expected to provide a basis for designing experiments to detect autotrophic methane-producing life forms on Mars. Text Ice permafrost Siberia MDPI Open Access Publishing Microorganisms 3 3 518 534 |
spellingShingle | permafrost Mars methanogenic archaea perchlorates Viktoria Shcherbakova Viktoria Oshurkova Yoshitaka Yoshimura The Effects of Perchlorates on the Permafrost Methanogens: Implication for Autotrophic Life on Mars |
title | The Effects of Perchlorates on the Permafrost Methanogens: Implication for Autotrophic Life on Mars |
title_full | The Effects of Perchlorates on the Permafrost Methanogens: Implication for Autotrophic Life on Mars |
title_fullStr | The Effects of Perchlorates on the Permafrost Methanogens: Implication for Autotrophic Life on Mars |
title_full_unstemmed | The Effects of Perchlorates on the Permafrost Methanogens: Implication for Autotrophic Life on Mars |
title_short | The Effects of Perchlorates on the Permafrost Methanogens: Implication for Autotrophic Life on Mars |
title_sort | effects of perchlorates on the permafrost methanogens: implication for autotrophic life on mars |
topic | permafrost Mars methanogenic archaea perchlorates |
topic_facet | permafrost Mars methanogenic archaea perchlorates |
url | https://doi.org/10.3390/microorganisms3030518 |