Disentangling the Taxonomic Status of Caprella penantis sensu stricto (Amphipoda: Caprellidae) Using an Integrative Approach

Despite its importance in intertidal and shallow-water marine ecosystems, Caprella penantis continues to be one of the most taxonomically challenging amphipods in the world. A recent molecular study focusing on C. penantis sensu stricto pointed out the existence of three highly divergent lineages, i...

Full description

Bibliographic Details
Published in:Life
Main Authors: M. Pilar Cabezas, José M. Guerra-García, António M. Santos
Format: Text
Language:English
Published: Multidisciplinary Digital Publishing Institute 2022
Subjects:
Online Access:https://doi.org/10.3390/life12020155
Description
Summary:Despite its importance in intertidal and shallow-water marine ecosystems, Caprella penantis continues to be one of the most taxonomically challenging amphipods in the world. A recent molecular study focusing on C. penantis sensu stricto pointed out the existence of three highly divergent lineages, indicating the possible existence of a process of ongoing speciation and, thus, casting doubt on the taxonomic status of this species. In the present study, we used an integrative approach to continue to shed light on the taxonomy and distribution of this caprellid. To this end, we combined morphological and genetic data (COI and 18S) and included, for the first time, populations from its type locality. Our analyses provide strong evidence of the existence of potentially three distinct species, genetically and geographically restricted, within C. penantis sensu stricto, with the distribution of the true C. penantis sensu stricto restricted to the UK (type locality), the northern coast of the Iberian Peninsula, and the Azores. Results show the co-occurrence of two of these species in a locality of northern Portugal and indicate the existence of distinct evolutionary and diversification patterns along the eastern Atlantic region. Overall, our study highlights the use of an integrative approach to properly assess species boundaries and unravel hidden biodiversity in amphipods.