Analysis of Seasonal Driving Factors and Inversion Model Optimization of Soil Moisture in the Qinghai Tibet Plateau Based on Machine Learning

The accuracy of soil moisture retrieval based on traditional microwave remote sensing models in the Qinghai Tibet Plateau (QTP) is unstable due to its unique plateau climate. However, considering the impact of multiple multi-scale factors effectively improves the accuracy and stability of soil moist...

Full description

Bibliographic Details
Published in:Water
Main Authors: Qinghai Deng, Jingjing Yang, Liping Zhang, Zhenzhou Sun, Guizong Sun, Qiao Chen, Fengke Dou
Format: Text
Language:English
Published: Multidisciplinary Digital Publishing Institute 2023
Subjects:
Online Access:https://doi.org/10.3390/w15162859
id ftmdpi:oai:mdpi.com:/2073-4441/15/16/2859/
record_format openpolar
spelling ftmdpi:oai:mdpi.com:/2073-4441/15/16/2859/ 2023-09-05T13:22:35+02:00 Analysis of Seasonal Driving Factors and Inversion Model Optimization of Soil Moisture in the Qinghai Tibet Plateau Based on Machine Learning Qinghai Deng Jingjing Yang Liping Zhang Zhenzhou Sun Guizong Sun Qiao Chen Fengke Dou agris 2023-08-08 application/pdf https://doi.org/10.3390/w15162859 EN eng Multidisciplinary Digital Publishing Institute https://dx.doi.org/10.3390/w15162859 https://creativecommons.org/licenses/by/4.0/ Water; Volume 15; Issue 16; Pages: 2859 Sentinel-1 semi-empirical model artificial neural networks decision tree algorithm Text 2023 ftmdpi https://doi.org/10.3390/w15162859 2023-08-13T23:51:57Z The accuracy of soil moisture retrieval based on traditional microwave remote sensing models in the Qinghai Tibet Plateau (QTP) is unstable due to its unique plateau climate. However, considering the impact of multiple multi-scale factors effectively improves the accuracy and stability of soil moisture inversion. This article uses Sentinel-1 and seasonal climate data to analyze factors and influencing mechanisms of soil moisture in the QTP. First, an artificial neural network (ANN) was used to conduct a significance analysis to screen significant influencing factors to reduce the redundancy of the experimental design and insert information. Second, the normalization effect of each factor on the soil moisture inversion was determined, and the factors with significant normalization influences were input to fit the model. Third, different fitting methods combined the semi-empirical models for soil moisture inversion. The decision tree Chi-square Automatic Interaction Detector (CHAID) analyzed the model accuracy, and the Pearson correlation coefficient between the sample and measured data was tested to further validate the accuracy of the results to obtain an optimized model that effectively inverts soil moisture. Finally, the influencing mechanisms of various factors in the optimization model were analyzed. The results show that: (1) The terrain factors, such as elevation, slope gradient, aspect, and angle, along with climate factors, such as temperature and precipitation, all have the greatest normalized impact on soil moisture in the QTP. (2) For spring (March), summer (June), and autumn (September), the greatest normalized factor of soil moisture is the terrain factor. In winter (December), precipitation was the greatest factor due to heavy snow cover and permafrost. (3) Analyzing the impact mechanism from various factors on the soil moisture showed a restricted relationship between the inversion results and the accuracy of the power fitting model, meaning it is unsuitable for general soil moisture inversion. ... Text permafrost MDPI Open Access Publishing Water 15 16 2859
institution Open Polar
collection MDPI Open Access Publishing
op_collection_id ftmdpi
language English
topic Sentinel-1
semi-empirical model
artificial neural networks
decision tree algorithm
spellingShingle Sentinel-1
semi-empirical model
artificial neural networks
decision tree algorithm
Qinghai Deng
Jingjing Yang
Liping Zhang
Zhenzhou Sun
Guizong Sun
Qiao Chen
Fengke Dou
Analysis of Seasonal Driving Factors and Inversion Model Optimization of Soil Moisture in the Qinghai Tibet Plateau Based on Machine Learning
topic_facet Sentinel-1
semi-empirical model
artificial neural networks
decision tree algorithm
description The accuracy of soil moisture retrieval based on traditional microwave remote sensing models in the Qinghai Tibet Plateau (QTP) is unstable due to its unique plateau climate. However, considering the impact of multiple multi-scale factors effectively improves the accuracy and stability of soil moisture inversion. This article uses Sentinel-1 and seasonal climate data to analyze factors and influencing mechanisms of soil moisture in the QTP. First, an artificial neural network (ANN) was used to conduct a significance analysis to screen significant influencing factors to reduce the redundancy of the experimental design and insert information. Second, the normalization effect of each factor on the soil moisture inversion was determined, and the factors with significant normalization influences were input to fit the model. Third, different fitting methods combined the semi-empirical models for soil moisture inversion. The decision tree Chi-square Automatic Interaction Detector (CHAID) analyzed the model accuracy, and the Pearson correlation coefficient between the sample and measured data was tested to further validate the accuracy of the results to obtain an optimized model that effectively inverts soil moisture. Finally, the influencing mechanisms of various factors in the optimization model were analyzed. The results show that: (1) The terrain factors, such as elevation, slope gradient, aspect, and angle, along with climate factors, such as temperature and precipitation, all have the greatest normalized impact on soil moisture in the QTP. (2) For spring (March), summer (June), and autumn (September), the greatest normalized factor of soil moisture is the terrain factor. In winter (December), precipitation was the greatest factor due to heavy snow cover and permafrost. (3) Analyzing the impact mechanism from various factors on the soil moisture showed a restricted relationship between the inversion results and the accuracy of the power fitting model, meaning it is unsuitable for general soil moisture inversion. ...
format Text
author Qinghai Deng
Jingjing Yang
Liping Zhang
Zhenzhou Sun
Guizong Sun
Qiao Chen
Fengke Dou
author_facet Qinghai Deng
Jingjing Yang
Liping Zhang
Zhenzhou Sun
Guizong Sun
Qiao Chen
Fengke Dou
author_sort Qinghai Deng
title Analysis of Seasonal Driving Factors and Inversion Model Optimization of Soil Moisture in the Qinghai Tibet Plateau Based on Machine Learning
title_short Analysis of Seasonal Driving Factors and Inversion Model Optimization of Soil Moisture in the Qinghai Tibet Plateau Based on Machine Learning
title_full Analysis of Seasonal Driving Factors and Inversion Model Optimization of Soil Moisture in the Qinghai Tibet Plateau Based on Machine Learning
title_fullStr Analysis of Seasonal Driving Factors and Inversion Model Optimization of Soil Moisture in the Qinghai Tibet Plateau Based on Machine Learning
title_full_unstemmed Analysis of Seasonal Driving Factors and Inversion Model Optimization of Soil Moisture in the Qinghai Tibet Plateau Based on Machine Learning
title_sort analysis of seasonal driving factors and inversion model optimization of soil moisture in the qinghai tibet plateau based on machine learning
publisher Multidisciplinary Digital Publishing Institute
publishDate 2023
url https://doi.org/10.3390/w15162859
op_coverage agris
genre permafrost
genre_facet permafrost
op_source Water; Volume 15; Issue 16; Pages: 2859
op_relation https://dx.doi.org/10.3390/w15162859
op_rights https://creativecommons.org/licenses/by/4.0/
op_doi https://doi.org/10.3390/w15162859
container_title Water
container_volume 15
container_issue 16
container_start_page 2859
_version_ 1776203087617196032