The Role of Samalas Mega Volcanic Eruption in European Summer Hydroclimate Change

In this study, the role of AD 1258 Samalas mega volcanic eruption in the summer hydroclimate change over Europe and the corresponding mechanisms are investigated through multi-member ensemble climate simulation experiments based on the Community Earth System Model (CESM). The results show that the C...

Full description

Bibliographic Details
Published in:Atmosphere
Main Authors: Bin Liu, Jian Liu, Liang Ning, Weiyi Sun, Mi Yan, Chen Zhao, Kefan Chen, Xiaoqing Wang
Format: Text
Language:English
Published: Multidisciplinary Digital Publishing Institute 2020
Subjects:
Online Access:https://doi.org/10.3390/atmos11111182
Description
Summary:In this study, the role of AD 1258 Samalas mega volcanic eruption in the summer hydroclimate change over Europe and the corresponding mechanisms are investigated through multi-member ensemble climate simulation experiments based on the Community Earth System Model (CESM). The results show that the CESM simulations are consistent with the reconstructed Palmer Drought Severity Index (PDSI) and the historical records of European climate. Europe experiences significant summer cooling in the first three years after the Samalas mega volcanic eruption, peaking at −3.61 °C, −4.02 °C, and −3.21 °C in year 1 over the whole Europe, Southern Europe, and Northern Europe, respectively. The summer surface air temperature (SAT, °C) changes over the European continent are mainly due to the direct weakening of shortwave solar radiation induced by volcanic aerosol. The summer precipitation over the European continent shows an obvious dipole distribution characteristic of north-south reverse phase. The precipitation increases up to 0.42 mm/d in year 1 over Southern Europe, while it decreases by −0.28 mm/d in year 1 over Northern Europe, respectively. Both simulations and reconstructions show that the centers with the strongest increase in precipitation have always been located in the Balkans and Apennine peninsulas along the Mediterranean coast over Southern Europe, and the centers with the strongest precipitation reduction are mainly located in the British Isles and Scandinavia over northwestern Europe. The negative response of North Atlantic Oscillation (NAO) with significant positive sea level pressure (SLP) anomaly in the north and negative SLP anomaly in the south is excited in summer. The low tropospheric wind anomaly caused by the negative phase of NAO in summer affects the water vapor transport to Europe, resulting in the distribution pattern of summer precipitation in Europe, which is drying in the north and wetting in the south. The knowledge gained from this study is crucial to better understand and predict the potential ...