Capability of C-Band SAR for Operational Wetland Monitoring at High Latitudes

Wetlands store large amounts of carbon, and depending on their status and type, they release specific amounts of methane gas to the atmosphere. The connection between wetland type and methane emission has been investigated in various studies and utilized in climate change monitoring and modelling. F...

Full description

Bibliographic Details
Published in:Remote Sensing
Main Authors: Julia Reschke, Annett Bartsch, Stefan Schlaffer, Dmitry Schepaschenko
Format: Text
Language:English
Published: Molecular Diversity Preservation International 2012
Subjects:
Online Access:https://doi.org/10.3390/rs4102923
id ftmdpi:oai:mdpi.com:/2072-4292/4/10/2923/
record_format openpolar
spelling ftmdpi:oai:mdpi.com:/2072-4292/4/10/2923/ 2023-08-20T04:09:13+02:00 Capability of C-Band SAR for Operational Wetland Monitoring at High Latitudes Julia Reschke Annett Bartsch Stefan Schlaffer Dmitry Schepaschenko agris 2012-10-01 application/pdf https://doi.org/10.3390/rs4102923 EN eng Molecular Diversity Preservation International https://dx.doi.org/10.3390/rs4102923 https://creativecommons.org/licenses/by/3.0/ Remote Sensing; Volume 4; Issue 10; Pages: 2923-2943 synthetic aperture radar C-band wetland dynamics Text 2012 ftmdpi https://doi.org/10.3390/rs4102923 2023-07-31T20:30:10Z Wetlands store large amounts of carbon, and depending on their status and type, they release specific amounts of methane gas to the atmosphere. The connection between wetland type and methane emission has been investigated in various studies and utilized in climate change monitoring and modelling. For improved estimation of methane emissions, land surface models require information such as the wetland fraction and its dynamics over large areas. Existing datasets of wetland dynamics present the total amount of wetland (fraction) for each model grid cell, but do not discriminate the different wetland types like permanent lakes, periodically inundated areas or peatlands. Wetland types differently influence methane fluxes and thus their contribution to the total wetland fraction should be quantified. Especially wetlands of permafrost regions are expected to have a strong impact on future climate due to soil thawing. In this study ENIVSAT ASAR Wide Swath data was tested for operational monitoring of the distribution of areas with a long-term SW near 1 (hSW) in northern Russia (SW = degree of saturation with water, 1 = saturated), which is a specific characteristic of peatlands. For the whole northern Russia, areas with hSW were delineated and discriminated from dynamic and open water bodies for the years 2007 and 2008. The area identified with this method amounts to approximately 300,000 km2 in northern Siberia in 2007. It overlaps with zones of high carbon storage. Comparison with a range of related datasets (static and dynamic) showed that hSW represents not only peatlands but also temporary wetlands associated with post-forest fire conditions in permafrost regions. Annual long-term monitoring of change in boreal and tundra environments is possible with the presented approach. Sentinel-1, the successor of ENVISAT ASAR, will provide data that may allow continuous monitoring of these wetland dynamics in the future complementing global observations of wetland fraction. Text permafrost Tundra Siberia MDPI Open Access Publishing Asar ENVELOPE(134.033,134.033,68.667,68.667) Remote Sensing 4 10 2923 2943
institution Open Polar
collection MDPI Open Access Publishing
op_collection_id ftmdpi
language English
topic synthetic aperture radar
C-band
wetland
dynamics
spellingShingle synthetic aperture radar
C-band
wetland
dynamics
Julia Reschke
Annett Bartsch
Stefan Schlaffer
Dmitry Schepaschenko
Capability of C-Band SAR for Operational Wetland Monitoring at High Latitudes
topic_facet synthetic aperture radar
C-band
wetland
dynamics
description Wetlands store large amounts of carbon, and depending on their status and type, they release specific amounts of methane gas to the atmosphere. The connection between wetland type and methane emission has been investigated in various studies and utilized in climate change monitoring and modelling. For improved estimation of methane emissions, land surface models require information such as the wetland fraction and its dynamics over large areas. Existing datasets of wetland dynamics present the total amount of wetland (fraction) for each model grid cell, but do not discriminate the different wetland types like permanent lakes, periodically inundated areas or peatlands. Wetland types differently influence methane fluxes and thus their contribution to the total wetland fraction should be quantified. Especially wetlands of permafrost regions are expected to have a strong impact on future climate due to soil thawing. In this study ENIVSAT ASAR Wide Swath data was tested for operational monitoring of the distribution of areas with a long-term SW near 1 (hSW) in northern Russia (SW = degree of saturation with water, 1 = saturated), which is a specific characteristic of peatlands. For the whole northern Russia, areas with hSW were delineated and discriminated from dynamic and open water bodies for the years 2007 and 2008. The area identified with this method amounts to approximately 300,000 km2 in northern Siberia in 2007. It overlaps with zones of high carbon storage. Comparison with a range of related datasets (static and dynamic) showed that hSW represents not only peatlands but also temporary wetlands associated with post-forest fire conditions in permafrost regions. Annual long-term monitoring of change in boreal and tundra environments is possible with the presented approach. Sentinel-1, the successor of ENVISAT ASAR, will provide data that may allow continuous monitoring of these wetland dynamics in the future complementing global observations of wetland fraction.
format Text
author Julia Reschke
Annett Bartsch
Stefan Schlaffer
Dmitry Schepaschenko
author_facet Julia Reschke
Annett Bartsch
Stefan Schlaffer
Dmitry Schepaschenko
author_sort Julia Reschke
title Capability of C-Band SAR for Operational Wetland Monitoring at High Latitudes
title_short Capability of C-Band SAR for Operational Wetland Monitoring at High Latitudes
title_full Capability of C-Band SAR for Operational Wetland Monitoring at High Latitudes
title_fullStr Capability of C-Band SAR for Operational Wetland Monitoring at High Latitudes
title_full_unstemmed Capability of C-Band SAR for Operational Wetland Monitoring at High Latitudes
title_sort capability of c-band sar for operational wetland monitoring at high latitudes
publisher Molecular Diversity Preservation International
publishDate 2012
url https://doi.org/10.3390/rs4102923
op_coverage agris
long_lat ENVELOPE(134.033,134.033,68.667,68.667)
geographic Asar
geographic_facet Asar
genre permafrost
Tundra
Siberia
genre_facet permafrost
Tundra
Siberia
op_source Remote Sensing; Volume 4; Issue 10; Pages: 2923-2943
op_relation https://dx.doi.org/10.3390/rs4102923
op_rights https://creativecommons.org/licenses/by/3.0/
op_doi https://doi.org/10.3390/rs4102923
container_title Remote Sensing
container_volume 4
container_issue 10
container_start_page 2923
op_container_end_page 2943
_version_ 1774722019007397888