The Spatial Analysis of Vegetation Cover and Permafrost Degradation for a Subarctic Palsa Mire Based on UAS Photogrammetry and GPR Data in the Kola Peninsula

Subarctic palsa mires undergo substantial transformation under climate impacts, and today a reliable marker of their degradation is the vegetation cover. We studied the correspondence between the surface traits of palsa degradation, as expressed in the vegetation composition, and the interior condit...

Full description

Bibliographic Details
Published in:Remote Sensing
Main Authors: Natalya Krutskikh, Pavel Ryazantsev, Pavel Ignashov, Alexey Kabonen
Format: Text
Language:English
Published: Multidisciplinary Digital Publishing Institute 2023
Subjects:
Online Access:https://doi.org/10.3390/rs15071896
Description
Summary:Subarctic palsa mires undergo substantial transformation under climate impacts, and today a reliable marker of their degradation is the vegetation cover. We studied the correspondence between the surface traits of palsa degradation, as expressed in the vegetation composition, and the interior condition of permafrost within subarctic palsa mires in the central part of the Kola Peninsula. We have employed a set of methods to collect the data, including geobotanical relevés, unmanned aerial system (UAS) photogrammetry, and ground-penetrating radar (GPR) survey. Based on RGB orthophoto values and morphometric variables, we produced a land cover classification (LCC) consistent with the vegetation classes identified during field measurements. The outcome proves that the additional morphometric predictors improve the accuracy of classification algorithms. We identified three major patterns in GPR cross-sections defining (i) permafrost in palsas, (ii) water saturated peat, and (iii) the regular peat layer. As a result, our GPR data demonstrated a high correlation with land cover classes and pointed to some vegetation features controlled by the peat deposit inner structure. Under our results, palsas with thawing permafrost can be appraised using sequences of LCC. This is primarily the lichen hummock—tall shrub—carpet vegetation (LH–TSh–C) sequence from palsa top to foot. We have also detected an asymmetric configuration of permafrost in some palsas in the west-to-east direction and hypothesized that it can relate to the wind regime of the area and snow accumulation on the eastern slopes. Our results highlight that the combined application of the remote UAS photogrammetry and GPR survey enables a more precise delineation of the lateral degradation of palsas.