Spatial Variability of Active Layer Thickness along the Qinghai–Tibet Engineering Corridor Resolved Using Ground-Penetrating Radar

Active layer thickness (ALT) is a sensitive indicator of response to climate change. ALT has important influence on various aspects of the regional environment such as hydrological processes and vegetation. In this study, 57 ground-penetrating radar (GPR) sections were surveyed along the Qinghai–Tib...

Full description

Bibliographic Details
Published in:Remote Sensing
Main Authors: Shichao Jia, Tingjun Zhang, Jiansheng Hao, Chaoyue Li, Roger Michaelides, Wanwan Shao, Sihao Wei, Kun Wang, Chengyan Fan
Format: Text
Language:English
Published: Multidisciplinary Digital Publishing Institute 2022
Subjects:
Online Access:https://doi.org/10.3390/rs14215606
Description
Summary:Active layer thickness (ALT) is a sensitive indicator of response to climate change. ALT has important influence on various aspects of the regional environment such as hydrological processes and vegetation. In this study, 57 ground-penetrating radar (GPR) sections were surveyed along the Qinghai–Tibet Engineering Corridor (QTEC) during 2018–2021, covering a total length of 58.5 km. The suitability of GPR-derived ALT was evaluated using in situ measurements and reference datasets, for which the bias and root mean square error were approximately −0.16 and 0.43 m, respectively. The GPR results show that the QTEC ALT was in the range of 1.25–6.70 m (mean: 2.49 ± 0.57 m). Observed ALT demonstrated pronounced spatial variability at both regional and fine scales. We developed a statistical estimation model that explicitly considers the soil thermal regime (i.e., ground thawing index, TIg), soil properties, and vegetation. This model was found suitable for simulating ALT over the QTEC, and it could explain 52% (R2 = 0.52) of ALT variability. The statistical model shows that a difference of 10 °C.d in TIg is equivalent to a change of 0.67 m in ALT, and an increase of 0.1 in the normalized difference vegetation index (NDVI) is equivalent to a decrease of 0.23 m in ALT. The fine-scale (<1 km) variation in ALT could account for 77.6% of the regional-scale (approximately 550 km) variation. These results provide a timely ALT benchmark along the QTEC, which can inform the construction and maintenance of engineering facilities along the QTEC.