Mapping Ice Flow Velocity of Tidewater Glaciers in Hornsund Fiord Area with the Use of Autonomous Repeat Image Feature Tracking (2018–2022)

Dynamic climate changes are particularly apparent in polar regions. Glaciers are retreatng towards the land at a very fast pace. This study demonstrates the application of the feature tracking method in the analysis of ice flow velocity in the region of the Hornsund fiord, southern Spitsbergen, in t...

Full description

Bibliographic Details
Published in:Remote Sensing
Main Authors: Wojciech Milczarek, Anna Kopeć, Tadeusz Głowacki
Format: Text
Language:English
Published: Multidisciplinary Digital Publishing Institute 2022
Subjects:
Online Access:https://doi.org/10.3390/rs14215429
Description
Summary:Dynamic climate changes are particularly apparent in polar regions. Glaciers are retreatng towards the land at a very fast pace. This study demonstrates the application of the feature tracking method in the analysis of ice flow velocity in the region of the Hornsund fiord, southern Spitsbergen, in the years 2018–2022. The calculations were based on the Geogrid and autoRIFT environments and on the Sentinel 1 images. The study also employed external data, such as a numerical terrain model and reference velocity values. The input data, e.g., the chip size and the search limit, were prepared accounting for the specific character of the investigated area. The velocities were calculated for nine biggest glaciers which terminated in the fiord. The accuracy of the results was identified by calculating the median absolute deviation (MAD) of the obtained displacement velocity values from the reference value for areas identified as stable. The study also attempted a causal analysis of the influence of weather factors on the dynamics of ice mass displacement. A systematic year-to-year decrease of the velocity was observed for the entire fiord. In the case of several glaciers, changes related to the ablation season (summer) are also clearly visible. The research results are promising and fill a research gap related to the absence of permanent monitoring and analysis of the dynamics of ice flow in polar regions. It is the first complex and precise study of glacier surface velocity changes, performed on the basis of satellite radar images for the entire Hornsund fiord.