Summary: | Pacific walruses (Odobenus rosmarus divergens) are using coastal haulouts in the Chukchi Sea more often and in larger numbers to rest between foraging bouts in late summer and autumn in recent years, because climate warming has reduced availability of sea ice that historically had provided resting platforms near their preferred benthic feeding grounds. With greater numbers of walruses hauling out in large aggregations, new opportunities are presented for monitoring the population. Here we evaluate different types of satellite imagery for detecting and delineating the peripheries of walrus aggregations at a commonly used haulout near Point Lay, Alaska, in 2018–2020. We evaluated optical and radar imagery ranging in pixel resolutions from 40 m to ~1 m: specifically, optical imagery from Landsat, Sentinel-2, Planet Labs, and DigitalGlobe, and synthetic aperture radar (SAR) imagery from Sentinel-1 and TerraSAR-X. Three observers independently examined satellite images to detect walrus aggregations and digitized their peripheries using visual interpretation. We compared interpretations between observers and to high-resolution (~2 cm) ortho-corrected imagery collected by a small unoccupied aerial system (UAS). Roughly two-thirds of the time, clouds precluded clear optical views of the study area from satellite. SAR was unaffected by clouds (and darkness) and provided unambiguous signatures of walrus aggregations at the Point Lay haulout. Among imagery types with 4–10 m resolution, observers unanimously agreed on all detections of walruses, and attained an average 65% overlap (sd 12.0, n 100) in their delineations of aggregation boundaries. For imagery with ~1 m resolution, overlap agreement was higher (mean 85%, sd 3.0, n 11). We found that optical satellite sensors with moderate resolution and high revisitation rates, such as PlanetScope and Sentinel-2, demonstrated robust and repeatable qualities for monitoring walrus haulouts, but temporal gaps between observations due to clouds were common. SAR imagery also ...
|