Time-Variable Gravity Field from the Combination of HLSST and SLR

The Earth’s time-variable gravity field is of great significance to study mass change within the Earth’s system. Since 2002, the NASA-DLR Gravity Recovery and Climate Experiment (GRACE) and its successor GRACE follow-on mission provide observations of monthly changes in the Earth gravity field with...

Full description

Bibliographic Details
Published in:Remote Sensing
Main Authors: Luping Zhong, Krzysztof Sośnica, Matthias Weigelt, Bingshi Liu, Xiancai Zou
Format: Text
Language:English
Published: Multidisciplinary Digital Publishing Institute 2021
Subjects:
SLR
Online Access:https://doi.org/10.3390/rs13173491
id ftmdpi:oai:mdpi.com:/2072-4292/13/17/3491/
record_format openpolar
spelling ftmdpi:oai:mdpi.com:/2072-4292/13/17/3491/ 2023-08-20T04:06:54+02:00 Time-Variable Gravity Field from the Combination of HLSST and SLR Luping Zhong Krzysztof Sośnica Matthias Weigelt Bingshi Liu Xiancai Zou agris 2021-09-02 application/pdf https://doi.org/10.3390/rs13173491 EN eng Multidisciplinary Digital Publishing Institute https://dx.doi.org/10.3390/rs13173491 https://creativecommons.org/licenses/by/4.0/ Remote Sensing; Volume 13; Issue 17; Pages: 3491 HLSST SLR satellite gravimetry time-variable gravity Text 2021 ftmdpi https://doi.org/10.3390/rs13173491 2023-08-01T02:36:16Z The Earth’s time-variable gravity field is of great significance to study mass change within the Earth’s system. Since 2002, the NASA-DLR Gravity Recovery and Climate Experiment (GRACE) and its successor GRACE follow-on mission provide observations of monthly changes in the Earth gravity field with unprecedented accuracy and resolution by employing low-low satellite-to-satellite tracking (LLSST) measurements. In addition to LLSST, monthly gravity field models can be acquired from satellite laser ranging (SLR) and high-low satellite-to-satellite tracking (HLSST). The monthly gravity field solutions HLSST+SLR were derived by combining HLSST observations of low earth orbiting (LEO) satellites with SLR observations of geodetic satellites. Bandpass filtering was applied to the harmonic coefficients of HLSST+SLR solutions to reduce noise. In this study, we analyzed the performance of the monthly HLSST+SLR solutions in the spectral and spatial domains. The results show that: (1) the accuracies of HLSST+SLR solutions are comparable to those from GRACE for coefficients below degree 10, and significantly improved compared to those of SLR-only and HLSST-only solutions; (2) the effective spatial resolution could reach 1000 km, corresponding to the spherical harmonic coefficient degree 20, which is higher than that of the HLSST-only solutions. Compared with the GRACE solutions, the global mass redistribution features and magnitudes can be well identified from HLSST+SLR solutions at the spatial resolution of 1000 km, although with much noise. In the applications of regional mass recovery, the seasonal variations over the Amazon Basin and the long-term trend over Greenland derived from HLSST+SLR solutions truncated to degree 20 agree well with those from GRACE solutions without truncation, and the RMS of mass variations is 282 Gt over the Amazon Basin and 192 Gt in Greenland. We conclude that HLSST+SLR can be an alternative option to estimate temporal changes in the Earth gravity field, although with far less spatial ... Text Greenland MDPI Open Access Publishing Greenland Remote Sensing 13 17 3491
institution Open Polar
collection MDPI Open Access Publishing
op_collection_id ftmdpi
language English
topic HLSST
SLR
satellite gravimetry
time-variable gravity
spellingShingle HLSST
SLR
satellite gravimetry
time-variable gravity
Luping Zhong
Krzysztof Sośnica
Matthias Weigelt
Bingshi Liu
Xiancai Zou
Time-Variable Gravity Field from the Combination of HLSST and SLR
topic_facet HLSST
SLR
satellite gravimetry
time-variable gravity
description The Earth’s time-variable gravity field is of great significance to study mass change within the Earth’s system. Since 2002, the NASA-DLR Gravity Recovery and Climate Experiment (GRACE) and its successor GRACE follow-on mission provide observations of monthly changes in the Earth gravity field with unprecedented accuracy and resolution by employing low-low satellite-to-satellite tracking (LLSST) measurements. In addition to LLSST, monthly gravity field models can be acquired from satellite laser ranging (SLR) and high-low satellite-to-satellite tracking (HLSST). The monthly gravity field solutions HLSST+SLR were derived by combining HLSST observations of low earth orbiting (LEO) satellites with SLR observations of geodetic satellites. Bandpass filtering was applied to the harmonic coefficients of HLSST+SLR solutions to reduce noise. In this study, we analyzed the performance of the monthly HLSST+SLR solutions in the spectral and spatial domains. The results show that: (1) the accuracies of HLSST+SLR solutions are comparable to those from GRACE for coefficients below degree 10, and significantly improved compared to those of SLR-only and HLSST-only solutions; (2) the effective spatial resolution could reach 1000 km, corresponding to the spherical harmonic coefficient degree 20, which is higher than that of the HLSST-only solutions. Compared with the GRACE solutions, the global mass redistribution features and magnitudes can be well identified from HLSST+SLR solutions at the spatial resolution of 1000 km, although with much noise. In the applications of regional mass recovery, the seasonal variations over the Amazon Basin and the long-term trend over Greenland derived from HLSST+SLR solutions truncated to degree 20 agree well with those from GRACE solutions without truncation, and the RMS of mass variations is 282 Gt over the Amazon Basin and 192 Gt in Greenland. We conclude that HLSST+SLR can be an alternative option to estimate temporal changes in the Earth gravity field, although with far less spatial ...
format Text
author Luping Zhong
Krzysztof Sośnica
Matthias Weigelt
Bingshi Liu
Xiancai Zou
author_facet Luping Zhong
Krzysztof Sośnica
Matthias Weigelt
Bingshi Liu
Xiancai Zou
author_sort Luping Zhong
title Time-Variable Gravity Field from the Combination of HLSST and SLR
title_short Time-Variable Gravity Field from the Combination of HLSST and SLR
title_full Time-Variable Gravity Field from the Combination of HLSST and SLR
title_fullStr Time-Variable Gravity Field from the Combination of HLSST and SLR
title_full_unstemmed Time-Variable Gravity Field from the Combination of HLSST and SLR
title_sort time-variable gravity field from the combination of hlsst and slr
publisher Multidisciplinary Digital Publishing Institute
publishDate 2021
url https://doi.org/10.3390/rs13173491
op_coverage agris
geographic Greenland
geographic_facet Greenland
genre Greenland
genre_facet Greenland
op_source Remote Sensing; Volume 13; Issue 17; Pages: 3491
op_relation https://dx.doi.org/10.3390/rs13173491
op_rights https://creativecommons.org/licenses/by/4.0/
op_doi https://doi.org/10.3390/rs13173491
container_title Remote Sensing
container_volume 13
container_issue 17
container_start_page 3491
_version_ 1774718270530650112