Enhanced Hydrate-Based Geological CO2 Capture and Sequestration as a Mitigation Strategy to Address Climate Change

Geological sequestration of CO2-rich gas as a CO2 capture and storage technique has a lower technical and cost barrier compared to industrial scale-up. In this study, we have proposed CO2 capture and storage via hydrate in geological formation within the hydrate stability zone as a novel technique t...

Full description

Bibliographic Details
Published in:Energies
Main Authors: Jyoti Shanker Pandey, Yousef Jouljamal Daas, Adam Paul Karcz, Nicolas von Solms
Format: Text
Language:English
Published: Multidisciplinary Digital Publishing Institute 2020
Subjects:
Online Access:https://doi.org/10.3390/en13215661
id ftmdpi:oai:mdpi.com:/1996-1073/13/21/5661/
record_format openpolar
spelling ftmdpi:oai:mdpi.com:/1996-1073/13/21/5661/ 2023-08-20T04:09:15+02:00 Enhanced Hydrate-Based Geological CO2 Capture and Sequestration as a Mitigation Strategy to Address Climate Change Jyoti Shanker Pandey Yousef Jouljamal Daas Adam Paul Karcz Nicolas von Solms 2020-10-29 application/pdf https://doi.org/10.3390/en13215661 EN eng Multidisciplinary Digital Publishing Institute H: Geo-Energy https://dx.doi.org/10.3390/en13215661 https://creativecommons.org/licenses/by/4.0/ Energies; Volume 13; Issue 21; Pages: 5661 climate change CO 2 capture and sequestration amino acids formation kinetics permafrost and marine sands Text 2020 ftmdpi https://doi.org/10.3390/en13215661 2023-08-01T00:22:20Z Geological sequestration of CO2-rich gas as a CO2 capture and storage technique has a lower technical and cost barrier compared to industrial scale-up. In this study, we have proposed CO2 capture and storage via hydrate in geological formation within the hydrate stability zone as a novel technique to contribute to global warming mitigation strategies, including carbon capture, utilization, and storage (CCUS) and to prevent vast methane release into the atmosphere caused by hydrate melting. We have attempted to enhance total gas uptake and CO2 capture efficiency in hydrate in the presence of kinetic promoters while using diluted CO2 gas (CO2-N2 mixture). Experiments are performed using unfrozen sands within hydrate stability zone condition and in the presence of low dosage surfactant and amino acids. Hydrate formation parameters, including sub-cooling temperature, induction time, total gas uptake, and split fraction, are calculated during the single-step formation and dissociation process. The effect of sands with varying particle sizes (160–630 µm, 1400–5000 µm), low dosage promoter (500–3000 ppm) and CO2 concentration in feed gas (20–30 mol%) on formation kinetic parameters was investigated. Enhanced formation kinetics are observed in the presence of surfactant (1000–3000 ppm) and hydrophobic amino acids (3000 ppm) at 120 bar and 1 ℃ experimental conditions. We report induction time in the range of 7–170 min and CO2 split fraction (0.60–0.90) in hydrate for 120 bar initial injection pressure. CO2 split fraction can be enhanced by reducing sand particle size or increasing the CO2 mol% in incoming feed gas at given injection pressure. This study also reports that formation kinetics in a porous medium are influenced by hydrate morphology. Hydrate morphology influences gas and water migration within sediments and controls pore space or particle surface correlation with the formation kinetics within coarse sediments. This investigation demonstrates the potential application of bio-friendly amino acids as promoters ... Text permafrost MDPI Open Access Publishing Energies 13 21 5661
institution Open Polar
collection MDPI Open Access Publishing
op_collection_id ftmdpi
language English
topic climate change
CO 2 capture and sequestration
amino acids
formation kinetics
permafrost and marine sands
spellingShingle climate change
CO 2 capture and sequestration
amino acids
formation kinetics
permafrost and marine sands
Jyoti Shanker Pandey
Yousef Jouljamal Daas
Adam Paul Karcz
Nicolas von Solms
Enhanced Hydrate-Based Geological CO2 Capture and Sequestration as a Mitigation Strategy to Address Climate Change
topic_facet climate change
CO 2 capture and sequestration
amino acids
formation kinetics
permafrost and marine sands
description Geological sequestration of CO2-rich gas as a CO2 capture and storage technique has a lower technical and cost barrier compared to industrial scale-up. In this study, we have proposed CO2 capture and storage via hydrate in geological formation within the hydrate stability zone as a novel technique to contribute to global warming mitigation strategies, including carbon capture, utilization, and storage (CCUS) and to prevent vast methane release into the atmosphere caused by hydrate melting. We have attempted to enhance total gas uptake and CO2 capture efficiency in hydrate in the presence of kinetic promoters while using diluted CO2 gas (CO2-N2 mixture). Experiments are performed using unfrozen sands within hydrate stability zone condition and in the presence of low dosage surfactant and amino acids. Hydrate formation parameters, including sub-cooling temperature, induction time, total gas uptake, and split fraction, are calculated during the single-step formation and dissociation process. The effect of sands with varying particle sizes (160–630 µm, 1400–5000 µm), low dosage promoter (500–3000 ppm) and CO2 concentration in feed gas (20–30 mol%) on formation kinetic parameters was investigated. Enhanced formation kinetics are observed in the presence of surfactant (1000–3000 ppm) and hydrophobic amino acids (3000 ppm) at 120 bar and 1 ℃ experimental conditions. We report induction time in the range of 7–170 min and CO2 split fraction (0.60–0.90) in hydrate for 120 bar initial injection pressure. CO2 split fraction can be enhanced by reducing sand particle size or increasing the CO2 mol% in incoming feed gas at given injection pressure. This study also reports that formation kinetics in a porous medium are influenced by hydrate morphology. Hydrate morphology influences gas and water migration within sediments and controls pore space or particle surface correlation with the formation kinetics within coarse sediments. This investigation demonstrates the potential application of bio-friendly amino acids as promoters ...
format Text
author Jyoti Shanker Pandey
Yousef Jouljamal Daas
Adam Paul Karcz
Nicolas von Solms
author_facet Jyoti Shanker Pandey
Yousef Jouljamal Daas
Adam Paul Karcz
Nicolas von Solms
author_sort Jyoti Shanker Pandey
title Enhanced Hydrate-Based Geological CO2 Capture and Sequestration as a Mitigation Strategy to Address Climate Change
title_short Enhanced Hydrate-Based Geological CO2 Capture and Sequestration as a Mitigation Strategy to Address Climate Change
title_full Enhanced Hydrate-Based Geological CO2 Capture and Sequestration as a Mitigation Strategy to Address Climate Change
title_fullStr Enhanced Hydrate-Based Geological CO2 Capture and Sequestration as a Mitigation Strategy to Address Climate Change
title_full_unstemmed Enhanced Hydrate-Based Geological CO2 Capture and Sequestration as a Mitigation Strategy to Address Climate Change
title_sort enhanced hydrate-based geological co2 capture and sequestration as a mitigation strategy to address climate change
publisher Multidisciplinary Digital Publishing Institute
publishDate 2020
url https://doi.org/10.3390/en13215661
genre permafrost
genre_facet permafrost
op_source Energies; Volume 13; Issue 21; Pages: 5661
op_relation H: Geo-Energy
https://dx.doi.org/10.3390/en13215661
op_rights https://creativecommons.org/licenses/by/4.0/
op_doi https://doi.org/10.3390/en13215661
container_title Energies
container_volume 13
container_issue 21
container_start_page 5661
_version_ 1774722079909740544