Conservation of Genomic Information in Multiple Displacement Amplified Low-Quantity Metagenomic Material from Marine Invertebrates

Marine invertebrate microbiomes have been a rich source of bioactive compounds and interesting genomic features. In cases where the achievable amounts of metagenomic DNA are too low for direct sequencing, multiple displacement amplification (MDA) can be used for whole genome amplification. However,...

Full description

Bibliographic Details
Published in:Marine Drugs
Main Authors: Andrea Iselin Elvheim, Chun Li, Bjarne Landfald
Format: Text
Language:English
Published: Multidisciplinary Digital Publishing Institute 2023
Subjects:
Online Access:https://doi.org/10.3390/md21030165
Description
Summary:Marine invertebrate microbiomes have been a rich source of bioactive compounds and interesting genomic features. In cases where the achievable amounts of metagenomic DNA are too low for direct sequencing, multiple displacement amplification (MDA) can be used for whole genome amplification. However, MDA has known limitations which can affect the quality of the resulting genomes and metagenomes. In this study, we evaluated the conservation of biosynthetic gene clusters (BGCs) and enzymes in MDA products from low numbers of prokaryotic cells (estimated 2–850). Marine invertebrate microbiomes collected from Arctic and sub-Arctic areas served as source material. The cells were separated from the host tissue, lysed, and directly subjected to MDA. The MDA products were sequenced by Illumina sequencing. Corresponding numbers of bacteria from a set of three reference strains were treated the same way. The study demonstrated that useful information on taxonomic, BGC, and enzyme diversities was obtainable from such marginal quantities of metagenomic material. Although high levels of assembly fragmentation resulted in most BGCs being incomplete, we conclude that this genome mining approach has the potential to reveal interesting BGCs and genes from hard-to-reach biological sources.