Fermented Oyster Extract Promotes Insulin-Like Growth Factor-1-Mediated Osteogenesis and Growth Rate
Fermented oyster (Crassostrea gigas) extract (FO) prevents ovariectomy-induced osteoporosis by inhibiting osteoclastogenesis and activating osteogenesis. However, the molecular mechanisms underlying FO-mediated bone formation and growth rate are unclear. In the current study, we found that FO signif...
Published in: | Marine Drugs |
---|---|
Main Authors: | , , , , , , |
Format: | Text |
Language: | English |
Published: |
Multidisciplinary Digital Publishing Institute
2020
|
Subjects: | |
Online Access: | https://doi.org/10.3390/md18090472 |
id |
ftmdpi:oai:mdpi.com:/1660-3397/18/9/472/ |
---|---|
record_format |
openpolar |
spelling |
ftmdpi:oai:mdpi.com:/1660-3397/18/9/472/ 2023-08-20T04:06:03+02:00 Fermented Oyster Extract Promotes Insulin-Like Growth Factor-1-Mediated Osteogenesis and Growth Rate Ilandarage Menu Neelaka Molagoda Jayasingha Arachchige Chathuranga Chanaka Jayasingha Yung Hyun Choi Eui Kyun Park You-Jin Jeon Bae-Jin Lee Gi-Young Kim agris 2020-09-18 application/pdf https://doi.org/10.3390/md18090472 EN eng Multidisciplinary Digital Publishing Institute https://dx.doi.org/10.3390/md18090472 https://creativecommons.org/licenses/by/4.0/ Marine Drugs; Volume 18; Issue 9; Pages: 472 Crassostrea gigas growth performance osteogenesis IGF-1 GSK-3β RUNX2 Text 2020 ftmdpi https://doi.org/10.3390/md18090472 2023-08-01T00:08:15Z Fermented oyster (Crassostrea gigas) extract (FO) prevents ovariectomy-induced osteoporosis by inhibiting osteoclastogenesis and activating osteogenesis. However, the molecular mechanisms underlying FO-mediated bone formation and growth rate are unclear. In the current study, we found that FO significantly upregulated the expression of growth-promoting genes in zebrafish larvae including insulin-like growth factor 1 (zigf-1), insulin-like growth factor binding protein 3 (zigfbp-3), growth hormone-1 (zgh-1), growth hormone receptor-1 (zghr-1), growth hormone receptor alpha (zghra), glucokinase (zgck), and cholecystokinin (zccka). In addition, zebrafish larvae treated with 100 μg/mL FO increased in total body length (3.89 ± 0.13 mm) at 12 days post fertilization (dpf) compared to untreated larvae (3.69 ± 0.02 mm); this effect was comparable to that of the β-glycerophosphate-treated zebrafish larvae (4.00 ± 0.02 mm). Furthermore, FO time- and dose-dependently increased the extracellular release of IGF-1 from preosteoblast MC3T3-E1 cells, which was accompanied by high expression of IGF-1. Pharmacological inhibition of IGF-1 receptor (IGF-1R) using picropodophyllin (PPP) significantly reduced FO-mediated vertebrae formation (from 9.19 ± 0.31 to 5.53 ± 0.35) and growth performance (from 3.91 ± 0.02 to 3.69 ± 0.01 mm) in zebrafish larvae at 9 dpf. Similarly, PPP significantly decreased FO-induced calcium deposition in MC3T3-E1 cells by inhibiting GSK-3β phosphorylation at Ser9. Additionally, DOI hydrochloride, a potent stabilizer of GSK-3β, reduced FO-induced nuclear translocation of RUNX2. Transient knockdown of IGF-1Rα/β using specific silencing RNA also resulted in a significant decrease in calcium deposition and reduction in GSK-3β phosphorylation at Ser9 in MC3T3-E1 cells. Altogether, these results indicate that FO increased phosphorylated GSK-3β at Ser9 by activating the autocrine IGF-1-mediated IGF-1R signaling pathway, thereby promoting osteogenesis and growth performance. Therefore, FO is a potential ... Text Crassostrea gigas MDPI Open Access Publishing Marine Drugs 18 9 472 |
institution |
Open Polar |
collection |
MDPI Open Access Publishing |
op_collection_id |
ftmdpi |
language |
English |
topic |
Crassostrea gigas growth performance osteogenesis IGF-1 GSK-3β RUNX2 |
spellingShingle |
Crassostrea gigas growth performance osteogenesis IGF-1 GSK-3β RUNX2 Ilandarage Menu Neelaka Molagoda Jayasingha Arachchige Chathuranga Chanaka Jayasingha Yung Hyun Choi Eui Kyun Park You-Jin Jeon Bae-Jin Lee Gi-Young Kim Fermented Oyster Extract Promotes Insulin-Like Growth Factor-1-Mediated Osteogenesis and Growth Rate |
topic_facet |
Crassostrea gigas growth performance osteogenesis IGF-1 GSK-3β RUNX2 |
description |
Fermented oyster (Crassostrea gigas) extract (FO) prevents ovariectomy-induced osteoporosis by inhibiting osteoclastogenesis and activating osteogenesis. However, the molecular mechanisms underlying FO-mediated bone formation and growth rate are unclear. In the current study, we found that FO significantly upregulated the expression of growth-promoting genes in zebrafish larvae including insulin-like growth factor 1 (zigf-1), insulin-like growth factor binding protein 3 (zigfbp-3), growth hormone-1 (zgh-1), growth hormone receptor-1 (zghr-1), growth hormone receptor alpha (zghra), glucokinase (zgck), and cholecystokinin (zccka). In addition, zebrafish larvae treated with 100 μg/mL FO increased in total body length (3.89 ± 0.13 mm) at 12 days post fertilization (dpf) compared to untreated larvae (3.69 ± 0.02 mm); this effect was comparable to that of the β-glycerophosphate-treated zebrafish larvae (4.00 ± 0.02 mm). Furthermore, FO time- and dose-dependently increased the extracellular release of IGF-1 from preosteoblast MC3T3-E1 cells, which was accompanied by high expression of IGF-1. Pharmacological inhibition of IGF-1 receptor (IGF-1R) using picropodophyllin (PPP) significantly reduced FO-mediated vertebrae formation (from 9.19 ± 0.31 to 5.53 ± 0.35) and growth performance (from 3.91 ± 0.02 to 3.69 ± 0.01 mm) in zebrafish larvae at 9 dpf. Similarly, PPP significantly decreased FO-induced calcium deposition in MC3T3-E1 cells by inhibiting GSK-3β phosphorylation at Ser9. Additionally, DOI hydrochloride, a potent stabilizer of GSK-3β, reduced FO-induced nuclear translocation of RUNX2. Transient knockdown of IGF-1Rα/β using specific silencing RNA also resulted in a significant decrease in calcium deposition and reduction in GSK-3β phosphorylation at Ser9 in MC3T3-E1 cells. Altogether, these results indicate that FO increased phosphorylated GSK-3β at Ser9 by activating the autocrine IGF-1-mediated IGF-1R signaling pathway, thereby promoting osteogenesis and growth performance. Therefore, FO is a potential ... |
format |
Text |
author |
Ilandarage Menu Neelaka Molagoda Jayasingha Arachchige Chathuranga Chanaka Jayasingha Yung Hyun Choi Eui Kyun Park You-Jin Jeon Bae-Jin Lee Gi-Young Kim |
author_facet |
Ilandarage Menu Neelaka Molagoda Jayasingha Arachchige Chathuranga Chanaka Jayasingha Yung Hyun Choi Eui Kyun Park You-Jin Jeon Bae-Jin Lee Gi-Young Kim |
author_sort |
Ilandarage Menu Neelaka Molagoda |
title |
Fermented Oyster Extract Promotes Insulin-Like Growth Factor-1-Mediated Osteogenesis and Growth Rate |
title_short |
Fermented Oyster Extract Promotes Insulin-Like Growth Factor-1-Mediated Osteogenesis and Growth Rate |
title_full |
Fermented Oyster Extract Promotes Insulin-Like Growth Factor-1-Mediated Osteogenesis and Growth Rate |
title_fullStr |
Fermented Oyster Extract Promotes Insulin-Like Growth Factor-1-Mediated Osteogenesis and Growth Rate |
title_full_unstemmed |
Fermented Oyster Extract Promotes Insulin-Like Growth Factor-1-Mediated Osteogenesis and Growth Rate |
title_sort |
fermented oyster extract promotes insulin-like growth factor-1-mediated osteogenesis and growth rate |
publisher |
Multidisciplinary Digital Publishing Institute |
publishDate |
2020 |
url |
https://doi.org/10.3390/md18090472 |
op_coverage |
agris |
genre |
Crassostrea gigas |
genre_facet |
Crassostrea gigas |
op_source |
Marine Drugs; Volume 18; Issue 9; Pages: 472 |
op_relation |
https://dx.doi.org/10.3390/md18090472 |
op_rights |
https://creativecommons.org/licenses/by/4.0/ |
op_doi |
https://doi.org/10.3390/md18090472 |
container_title |
Marine Drugs |
container_volume |
18 |
container_issue |
9 |
container_start_page |
472 |
_version_ |
1774716966586548224 |