Modelling spectral and broadband UV-B (290--325 nm) irradiance for Canada
This is a study concerning the modeling of UV-B irradiance at the earth's surface. It is timely because stratospheric ozone depletion has occurred globally as a result of increasing chlorofluorocarbons in the stratosphere. This reduction allows more UV-B irradiance (290-325 nm) to reach the ear...
Main Author: | |
---|---|
Other Authors: | , |
Format: | Thesis |
Language: | unknown |
Published: |
2010
|
Subjects: | |
Online Access: | http://hdl.handle.net/11375/7559 |
id |
ftmcmaster:oai:macsphere.mcmaster.ca:11375/7559 |
---|---|
record_format |
openpolar |
spelling |
ftmcmaster:oai:macsphere.mcmaster.ca:11375/7559 2024-09-15T17:36:01+00:00 Modelling spectral and broadband UV-B (290--325 nm) irradiance for Canada Binyamin, Jacqueline Davies, J. A. School of Geography and Geology 2010-07-22 http://hdl.handle.net/11375/7559 unknown opendissertations/2829 3747 1405748 http://hdl.handle.net/11375/7559 Geography Geology thesis 2010 ftmcmaster 2024-06-26T04:35:24Z This is a study concerning the modeling of UV-B irradiance at the earth's surface. It is timely because stratospheric ozone depletion has occurred globally as a result of increasing chlorofluorocarbons in the stratosphere. This reduction allows more UV-B irradiance (290-325 nm) to reach the earth's surface and cause detrimental biological effects. Presently there are few spectral UV-B radiation measurements. Therefore, irradiance models are useful tools for estimating UV-B irradiances in areas where measurements are not made. A numerical model to calculate spectral and broadband irradiances for all sky conditions is described and the results are validated with measurements for nine Canadian stations (Alert, Resolute Bay, Churchill, Edmonton, Regina, Winnipeg, Montreal, Halifax and Toronto). The model uses either the discrete ordinate radiative transfer (DISORT) or the delta-Eddington algorithms to solve the radiative transfer equation for a 49-layer, vertically inhomogeneous, plane-parallel atmosphere, with cloud inserted between the 2 and 3 km heights. Spectral calculations are made at 1 nm intervals. The model uses extraterrestrial spectral irradiance, spectral optical properties for each atmospheric layer for ozone, air molecules, and aerosol and surface albedo. Cloud optical depths τ c were calculated separately for overcast irradiance measurements for nine stations from 26 years of data. The delta-Eddington method performed well for producing τc and overcast broadband irradiances. A fixed τc value of 18.7 was found to be accurate for calculating cloudy sky irradiances at all stations except in the arctic. Twenty-six station years of irradiance measurements and model estimates are compared. Comparisons are made both for daily totals and for monthly averaged spectral and broadband irradiances. It is shown that the delta-Eddington method is not suitable for calculating spectral irradiances under clear skies, at short wavelengths (<305 nm), where absorption by ozone is high, and at large solar zenith angles. ... Thesis albedo Resolute Bay MacSphere (McMaster University) |
institution |
Open Polar |
collection |
MacSphere (McMaster University) |
op_collection_id |
ftmcmaster |
language |
unknown |
topic |
Geography Geology |
spellingShingle |
Geography Geology Binyamin, Jacqueline Modelling spectral and broadband UV-B (290--325 nm) irradiance for Canada |
topic_facet |
Geography Geology |
description |
This is a study concerning the modeling of UV-B irradiance at the earth's surface. It is timely because stratospheric ozone depletion has occurred globally as a result of increasing chlorofluorocarbons in the stratosphere. This reduction allows more UV-B irradiance (290-325 nm) to reach the earth's surface and cause detrimental biological effects. Presently there are few spectral UV-B radiation measurements. Therefore, irradiance models are useful tools for estimating UV-B irradiances in areas where measurements are not made. A numerical model to calculate spectral and broadband irradiances for all sky conditions is described and the results are validated with measurements for nine Canadian stations (Alert, Resolute Bay, Churchill, Edmonton, Regina, Winnipeg, Montreal, Halifax and Toronto). The model uses either the discrete ordinate radiative transfer (DISORT) or the delta-Eddington algorithms to solve the radiative transfer equation for a 49-layer, vertically inhomogeneous, plane-parallel atmosphere, with cloud inserted between the 2 and 3 km heights. Spectral calculations are made at 1 nm intervals. The model uses extraterrestrial spectral irradiance, spectral optical properties for each atmospheric layer for ozone, air molecules, and aerosol and surface albedo. Cloud optical depths τ c were calculated separately for overcast irradiance measurements for nine stations from 26 years of data. The delta-Eddington method performed well for producing τc and overcast broadband irradiances. A fixed τc value of 18.7 was found to be accurate for calculating cloudy sky irradiances at all stations except in the arctic. Twenty-six station years of irradiance measurements and model estimates are compared. Comparisons are made both for daily totals and for monthly averaged spectral and broadband irradiances. It is shown that the delta-Eddington method is not suitable for calculating spectral irradiances under clear skies, at short wavelengths (<305 nm), where absorption by ozone is high, and at large solar zenith angles. ... |
author2 |
Davies, J. A. School of Geography and Geology |
format |
Thesis |
author |
Binyamin, Jacqueline |
author_facet |
Binyamin, Jacqueline |
author_sort |
Binyamin, Jacqueline |
title |
Modelling spectral and broadband UV-B (290--325 nm) irradiance for Canada |
title_short |
Modelling spectral and broadband UV-B (290--325 nm) irradiance for Canada |
title_full |
Modelling spectral and broadband UV-B (290--325 nm) irradiance for Canada |
title_fullStr |
Modelling spectral and broadband UV-B (290--325 nm) irradiance for Canada |
title_full_unstemmed |
Modelling spectral and broadband UV-B (290--325 nm) irradiance for Canada |
title_sort |
modelling spectral and broadband uv-b (290--325 nm) irradiance for canada |
publishDate |
2010 |
url |
http://hdl.handle.net/11375/7559 |
genre |
albedo Resolute Bay |
genre_facet |
albedo Resolute Bay |
op_relation |
opendissertations/2829 3747 1405748 http://hdl.handle.net/11375/7559 |
_version_ |
1810486657843986432 |