Short-term responses of primary processes in PS II to low temperature are sensitively indicated by fast chlorophyll fluorescence kinetics in Antarctic lichen Dermatocarpon polyphyllizum

In this study, we investigated the effects of low temperature on the fast chlorophyll fluo-rescence transient (OJIP) and OJIP-derived parameters in chlorolichen Dermatocarpon polyphyllizum expossed to a gradually decreasing temperature (22°C, 18°C, 14°C, 12°C, 10°C, 7°C and 4°C). The segments of lic...

Full description

Bibliographic Details
Main Authors: Marečková, Michaela, Barták, Miloš
Format: Article in Journal/Newspaper
Language:English
Published: Masaryk Univerzity 2017
Subjects:
Online Access:http://journals.muni.cz/CPR/article/view/12908
Description
Summary:In this study, we investigated the effects of low temperature on the fast chlorophyll fluo-rescence transient (OJIP) and OJIP-derived parameters in chlorolichen Dermatocarpon polyphyllizum expossed to a gradually decreasing temperature (22°C, 18°C, 14°C, 12°C, 10°C, 7°C and 4°C). The segments of lichen thalli were exposed to a certain temperature either in dark- and light-adapted state for 10 minutes in order to evaluate the effects on chlorophyll fluorescence parameters. The initial photochemical phase of the transient (O-J) due to reduction of the primary quinone acceptor (QA) was found temperature dependent. The K-step was apparent for the samples measured at the temperature above 12°C, but not below 10oC in light-adapted lichen thalli. With the thallus temperature decrease, majority of the chlorophyll fluorescence parameters derived from OJIP (ET0/RC, Psi_0, and DI0/RC) showed no change in light-adapted samples but a decrease in dark-adapted samples. The effects of dark- / light-adaptation of the lichen samples on the OJIP and OJIP-derived parameters was attributed to the differences in production/utilization of high-energy products of primary photochemical processes of photosynthesis in dark- and light-adapted state, respectively. The other parameters (ABS/RC, TR0/RC) showed a decrease with thallus temperature decrease both in light- and dark-adapted samples. The results suggest that fast chlorophyll fluorescence trasient is an useful tool to investigate temperature-dependent changes in photosystem II in chlorolichens, their photobionts, respectively.