Remote Sensing of the NE Pacific: Retrospective and Concurrent Time Series Analysis Using Multiple Sensors on Multiple Scales
A significant number of physical and biological variables covary within and between the boundary currents of the subarctic and subtropical gyres in the NE Pacific Ocean. These (summarized in US GLOBEC Reports 17, 11 and 7) include the strength of the transports, surface temperatures, zooplankton bio...
Main Author: | |
---|---|
Format: | Text |
Language: | unknown |
Published: |
DigitalCommons@UMaine
2002
|
Subjects: | |
Online Access: | https://digitalcommons.library.umaine.edu/orsp_reports/223 https://digitalcommons.library.umaine.edu/cgi/viewcontent.cgi?article=1230&context=orsp_reports |
Summary: | A significant number of physical and biological variables covary within and between the boundary currents of the subarctic and subtropical gyres in the NE Pacific Ocean. These (summarized in US GLOBEC Reports 17, 11 and 7) include the strength of the transports, surface temperatures, zooplankton biomass and the catch of commercially important fishes. Time scales range from individual events to interdecadal regime shifts. The mechanisms by which these physical and biological fields covary are unknown, but it is postulated that the same mechanisms involved in interannual variability also affect long term climatic variability. Clarification and quantification of the mechanisms governing interannual variability will therefore help to `model` the biological and physical responses of these economically and ecologically important systems to future climate change. One of the principal strategies for addressing variability across these time and space scales and their potential linkages is to make effective use of historical and presently available multi sensor satellite data sets. The goal of this proposal is to process, archive and analyze environmental data from a number of satellite sensors and other sources in order to characterize and quantify the dominant modes of variability in surface transports, temperature and pigment concentrations in the NE Pacific Ocean. The analyses will cover multiple time/space scales, considering basin scale connections, mesoscale circulation within specific regions of the boundary currents, and small scale, nearshore circulation in two of the regions. In addition to the analysis carried out in this project, these data will be made available over Internet and on CDROM to other investigators. On the basin scale, the project will quantify the exchange between the West Wind Drift (WWD), the Coastal Gulf of Alaska (CGOA) and the California Current System (CCS), testing the often used hypothesis that the covariability in the two boundary currents is due to changes in the location of the WOOD. ... |
---|