Cellulose Nanomaterials: A Novel Adjuvant and Delivery System for Aquaculture Vaccine Applications

This applied interdisciplinary project capitalized upon the University of Maine’s research expertise, facilities, and industry partnerships in aquaculture, fish health and cellulose nanomaterial (CNM) science and engineering towards the development of a safe and efficacious new generation of CNM a...

Full description

Bibliographic Details
Main Author: Turner, Sarah M.
Format: Text
Language:unknown
Published: DigitalCommons@UMaine 2024
Subjects:
Online Access:https://digitalcommons.library.umaine.edu/etd/3929
https://digitalcommons.library.umaine.edu/context/etd/article/4990/viewcontent/embargo_D_Turner_Sarah_May_24.pdf
id ftmaineuniv:oai:digitalcommons.library.umaine.edu:etd-4990
record_format openpolar
spelling ftmaineuniv:oai:digitalcommons.library.umaine.edu:etd-4990 2024-09-30T14:32:21+00:00 Cellulose Nanomaterials: A Novel Adjuvant and Delivery System for Aquaculture Vaccine Applications Turner, Sarah M. 2024-05-03T07:00:00Z application/pdf https://digitalcommons.library.umaine.edu/etd/3929 https://digitalcommons.library.umaine.edu/context/etd/article/4990/viewcontent/embargo_D_Turner_Sarah_May_24.pdf unknown DigitalCommons@UMaine https://digitalcommons.library.umaine.edu/etd/3929 https://digitalcommons.library.umaine.edu/context/etd/article/4990/viewcontent/embargo_D_Turner_Sarah_May_24.pdf Electronic Theses and Dissertations Cellulose Nanomaterials Aquaculture Vaccines Atlantic salmon Adjuvants Biopolymers Animal Diseases Aquaculture and Fisheries Immunotherapy Nanomedicine Veterinary Infectious Diseases text 2024 ftmaineuniv 2024-09-03T23:41:48Z This applied interdisciplinary project capitalized upon the University of Maine’s research expertise, facilities, and industry partnerships in aquaculture, fish health and cellulose nanomaterial (CNM) science and engineering towards the development of a safe and efficacious new generation of CNM adjuvanted vaccines for commercial aquaculture. Disease outbreaks in aquaculture cause significant production losses, necessitating vaccines for disease management. However, vaccines can be expensive, vary in effectiveness, and produce adjuvant-induced adverse effects, causing fish welfare issues and negative economic impacts. The hypothesis driving this research was that CNM, a renewable wood fiber, could be tuned to act as depots/adjuvants in vaccine formulations to achieve biocompatible, environmentally friendly, and cost-effective disease protection in the extensively farmed species, Atlantic salmon (Salmo salar L.). First, in vivo safety of various unmodified CNM formulations demonstrated the biopolymer was a low risk of harm evidenced by minimal gross reactions in Atlantic salmon post-injection. However, Atlantic salmon vaccinated with unmodified CNM formulations demonstrated indeterminate serum IgM antibody response to inactivated strains of Aeromonas salmonicida using an indirect enzyme-linked immunosorbent assay (ELISA). This suggested a need for immobilization of antigens to CNM for efficacious immunogenicity. In collaboration with the Mason Laboratory in the University of Maine’s Biomedical Engineering Department, the surface carboxyl group on TOCNF was leveraged to investigate methods of physically crosslinking TOCN fibers into a matrix as one way to achieve high antigen loading for controlled delivery and immunomodulation. Citric acid cross-linked TOCNF hydrogels were produced with a Vibrio anguillarum bacterin acting as the antigen and examined after 600- degree days post-implantation with a modified passive integrated transponder tagging device. Scored gross and microscopic pathologies demonstrated a ... Text Atlantic salmon Salmo salar The University of Maine: DigitalCommons@UMaine
institution Open Polar
collection The University of Maine: DigitalCommons@UMaine
op_collection_id ftmaineuniv
language unknown
topic Cellulose Nanomaterials
Aquaculture
Vaccines
Atlantic salmon
Adjuvants
Biopolymers
Animal Diseases
Aquaculture and Fisheries
Immunotherapy
Nanomedicine
Veterinary Infectious Diseases
spellingShingle Cellulose Nanomaterials
Aquaculture
Vaccines
Atlantic salmon
Adjuvants
Biopolymers
Animal Diseases
Aquaculture and Fisheries
Immunotherapy
Nanomedicine
Veterinary Infectious Diseases
Turner, Sarah M.
Cellulose Nanomaterials: A Novel Adjuvant and Delivery System for Aquaculture Vaccine Applications
topic_facet Cellulose Nanomaterials
Aquaculture
Vaccines
Atlantic salmon
Adjuvants
Biopolymers
Animal Diseases
Aquaculture and Fisheries
Immunotherapy
Nanomedicine
Veterinary Infectious Diseases
description This applied interdisciplinary project capitalized upon the University of Maine’s research expertise, facilities, and industry partnerships in aquaculture, fish health and cellulose nanomaterial (CNM) science and engineering towards the development of a safe and efficacious new generation of CNM adjuvanted vaccines for commercial aquaculture. Disease outbreaks in aquaculture cause significant production losses, necessitating vaccines for disease management. However, vaccines can be expensive, vary in effectiveness, and produce adjuvant-induced adverse effects, causing fish welfare issues and negative economic impacts. The hypothesis driving this research was that CNM, a renewable wood fiber, could be tuned to act as depots/adjuvants in vaccine formulations to achieve biocompatible, environmentally friendly, and cost-effective disease protection in the extensively farmed species, Atlantic salmon (Salmo salar L.). First, in vivo safety of various unmodified CNM formulations demonstrated the biopolymer was a low risk of harm evidenced by minimal gross reactions in Atlantic salmon post-injection. However, Atlantic salmon vaccinated with unmodified CNM formulations demonstrated indeterminate serum IgM antibody response to inactivated strains of Aeromonas salmonicida using an indirect enzyme-linked immunosorbent assay (ELISA). This suggested a need for immobilization of antigens to CNM for efficacious immunogenicity. In collaboration with the Mason Laboratory in the University of Maine’s Biomedical Engineering Department, the surface carboxyl group on TOCNF was leveraged to investigate methods of physically crosslinking TOCN fibers into a matrix as one way to achieve high antigen loading for controlled delivery and immunomodulation. Citric acid cross-linked TOCNF hydrogels were produced with a Vibrio anguillarum bacterin acting as the antigen and examined after 600- degree days post-implantation with a modified passive integrated transponder tagging device. Scored gross and microscopic pathologies demonstrated a ...
format Text
author Turner, Sarah M.
author_facet Turner, Sarah M.
author_sort Turner, Sarah M.
title Cellulose Nanomaterials: A Novel Adjuvant and Delivery System for Aquaculture Vaccine Applications
title_short Cellulose Nanomaterials: A Novel Adjuvant and Delivery System for Aquaculture Vaccine Applications
title_full Cellulose Nanomaterials: A Novel Adjuvant and Delivery System for Aquaculture Vaccine Applications
title_fullStr Cellulose Nanomaterials: A Novel Adjuvant and Delivery System for Aquaculture Vaccine Applications
title_full_unstemmed Cellulose Nanomaterials: A Novel Adjuvant and Delivery System for Aquaculture Vaccine Applications
title_sort cellulose nanomaterials: a novel adjuvant and delivery system for aquaculture vaccine applications
publisher DigitalCommons@UMaine
publishDate 2024
url https://digitalcommons.library.umaine.edu/etd/3929
https://digitalcommons.library.umaine.edu/context/etd/article/4990/viewcontent/embargo_D_Turner_Sarah_May_24.pdf
genre Atlantic salmon
Salmo salar
genre_facet Atlantic salmon
Salmo salar
op_source Electronic Theses and Dissertations
op_relation https://digitalcommons.library.umaine.edu/etd/3929
https://digitalcommons.library.umaine.edu/context/etd/article/4990/viewcontent/embargo_D_Turner_Sarah_May_24.pdf
_version_ 1811636533463089152