Responses of Juvenile Atlantic Salmon to Competition and Environmental Change: Implications for Performance in Maine Streams

New England’s climate is changing faster than that of any other region in the continental United States. Over the last century, Maine has experienced an increase in annual temperature of approximately 1.48oC along with a 15 percent increase in annual precipitation. Temperature and precipitation play...

Full description

Bibliographic Details
Main Author: Ramberg-Pihl, Nicole C
Format: Text
Language:unknown
Published: DigitalCommons@UMaine 2020
Subjects:
Online Access:https://digitalcommons.library.umaine.edu/etd/3258
https://digitalcommons.library.umaine.edu/cgi/viewcontent.cgi?article=4317&context=etd
id ftmaineuniv:oai:digitalcommons.library.umaine.edu:etd-4317
record_format openpolar
spelling ftmaineuniv:oai:digitalcommons.library.umaine.edu:etd-4317 2023-05-15T15:28:16+02:00 Responses of Juvenile Atlantic Salmon to Competition and Environmental Change: Implications for Performance in Maine Streams Ramberg-Pihl, Nicole C 2020-12-01T08:00:00Z application/pdf https://digitalcommons.library.umaine.edu/etd/3258 https://digitalcommons.library.umaine.edu/cgi/viewcontent.cgi?article=4317&context=etd unknown DigitalCommons@UMaine https://digitalcommons.library.umaine.edu/etd/3258 https://digitalcommons.library.umaine.edu/cgi/viewcontent.cgi?article=4317&context=etd Electronic Theses and Dissertations Freshwater Ecology Climate Change Atlantic Salmon Species Interactions Food Webs Behavior and Ethology Terrestrial and Aquatic Ecology text 2020 ftmaineuniv 2023-03-12T20:11:46Z New England’s climate is changing faster than that of any other region in the continental United States. Over the last century, Maine has experienced an increase in annual temperature of approximately 1.48oC along with a 15 percent increase in annual precipitation. Temperature and precipitation play vital roles in shaping the ecology of freshwater environments. Therefore, changes in regional climate could undermine the structure and stability of Maine’s freshwater systems as they currently exist. Maine currently harbors the last wild populations of Atlantic salmon (Salmo salar) in the United States. Atlantic salmon were once abundant in Maine streams, but suffered dramatic declines due to several factors including deforestation, overfishing, and the construction of dams. In 2000, Atlantic salmon were listed as a Federally Endangered species. As juveniles, salmon spend 1 to 3 years in Maine streams before smolting. However, salmon face several threats as juveniles in Maine streams, including changes in climate as well as competition from introduced or invasive species which could outcompete salmon for resources. This dissertation examines these impacts on juvenile Atlantic salmon (Salmo salar) and the stream food webs in which they are embedded by (1.) Using temperature-controlled microcosm experiments to investigate the potential for climate-driven warming to exacerbate the effects of competition between native and invasive species from different thermal guilds. The results suggest that non-native smallmouth bass (Micropterus dolomeiu) have the potential to outcompete Atlantic salmon as waters continue to warm. (2.) Running dynamic regression models to analyze the relationship between juvenile Atlantic salmon condition, temperature, and precipitation for 9 streams across 4 drainages over a 16-year period. The results suggest that the impacts of climate change on salmon growth may vary by stream and spatial scale. (3.) Conducting an instream mesocosm experiment to investigate the food-web implications of ... Text Atlantic salmon Salmo salar The University of Maine: DigitalCommons@UMaine
institution Open Polar
collection The University of Maine: DigitalCommons@UMaine
op_collection_id ftmaineuniv
language unknown
topic Freshwater
Ecology
Climate Change
Atlantic Salmon
Species Interactions
Food Webs
Behavior and Ethology
Terrestrial and Aquatic Ecology
spellingShingle Freshwater
Ecology
Climate Change
Atlantic Salmon
Species Interactions
Food Webs
Behavior and Ethology
Terrestrial and Aquatic Ecology
Ramberg-Pihl, Nicole C
Responses of Juvenile Atlantic Salmon to Competition and Environmental Change: Implications for Performance in Maine Streams
topic_facet Freshwater
Ecology
Climate Change
Atlantic Salmon
Species Interactions
Food Webs
Behavior and Ethology
Terrestrial and Aquatic Ecology
description New England’s climate is changing faster than that of any other region in the continental United States. Over the last century, Maine has experienced an increase in annual temperature of approximately 1.48oC along with a 15 percent increase in annual precipitation. Temperature and precipitation play vital roles in shaping the ecology of freshwater environments. Therefore, changes in regional climate could undermine the structure and stability of Maine’s freshwater systems as they currently exist. Maine currently harbors the last wild populations of Atlantic salmon (Salmo salar) in the United States. Atlantic salmon were once abundant in Maine streams, but suffered dramatic declines due to several factors including deforestation, overfishing, and the construction of dams. In 2000, Atlantic salmon were listed as a Federally Endangered species. As juveniles, salmon spend 1 to 3 years in Maine streams before smolting. However, salmon face several threats as juveniles in Maine streams, including changes in climate as well as competition from introduced or invasive species which could outcompete salmon for resources. This dissertation examines these impacts on juvenile Atlantic salmon (Salmo salar) and the stream food webs in which they are embedded by (1.) Using temperature-controlled microcosm experiments to investigate the potential for climate-driven warming to exacerbate the effects of competition between native and invasive species from different thermal guilds. The results suggest that non-native smallmouth bass (Micropterus dolomeiu) have the potential to outcompete Atlantic salmon as waters continue to warm. (2.) Running dynamic regression models to analyze the relationship between juvenile Atlantic salmon condition, temperature, and precipitation for 9 streams across 4 drainages over a 16-year period. The results suggest that the impacts of climate change on salmon growth may vary by stream and spatial scale. (3.) Conducting an instream mesocosm experiment to investigate the food-web implications of ...
format Text
author Ramberg-Pihl, Nicole C
author_facet Ramberg-Pihl, Nicole C
author_sort Ramberg-Pihl, Nicole C
title Responses of Juvenile Atlantic Salmon to Competition and Environmental Change: Implications for Performance in Maine Streams
title_short Responses of Juvenile Atlantic Salmon to Competition and Environmental Change: Implications for Performance in Maine Streams
title_full Responses of Juvenile Atlantic Salmon to Competition and Environmental Change: Implications for Performance in Maine Streams
title_fullStr Responses of Juvenile Atlantic Salmon to Competition and Environmental Change: Implications for Performance in Maine Streams
title_full_unstemmed Responses of Juvenile Atlantic Salmon to Competition and Environmental Change: Implications for Performance in Maine Streams
title_sort responses of juvenile atlantic salmon to competition and environmental change: implications for performance in maine streams
publisher DigitalCommons@UMaine
publishDate 2020
url https://digitalcommons.library.umaine.edu/etd/3258
https://digitalcommons.library.umaine.edu/cgi/viewcontent.cgi?article=4317&context=etd
genre Atlantic salmon
Salmo salar
genre_facet Atlantic salmon
Salmo salar
op_source Electronic Theses and Dissertations
op_relation https://digitalcommons.library.umaine.edu/etd/3258
https://digitalcommons.library.umaine.edu/cgi/viewcontent.cgi?article=4317&context=etd
_version_ 1766358638904999936