A Comparison of Global Climate Reanalysis and Climate of South Greenland and the North Atlantic

Global climate reanalysis models are regularly used in many scientific fields concerning climate and atmospheric observation. This thesis utilizes reanalysis models in two chapters in order to gain insight into North Atlantic climate teleconnections and their relation to precipitation across South G...

Full description

Bibliographic Details
Main Author: Auger, Jeff
Format: Text
Language:unknown
Published: DigitalCommons@UMaine 2016
Subjects:
Online Access:https://digitalcommons.library.umaine.edu/etd/2537
https://digitalcommons.library.umaine.edu/context/etd/article/3588/viewcontent/M_JAuger_Revisions.pdf
id ftmaineuniv:oai:digitalcommons.library.umaine.edu:etd-3588
record_format openpolar
spelling ftmaineuniv:oai:digitalcommons.library.umaine.edu:etd-3588 2023-06-11T04:12:05+02:00 A Comparison of Global Climate Reanalysis and Climate of South Greenland and the North Atlantic Auger, Jeff 2016-12-01T08:00:00Z application/pdf https://digitalcommons.library.umaine.edu/etd/2537 https://digitalcommons.library.umaine.edu/context/etd/article/3588/viewcontent/M_JAuger_Revisions.pdf unknown DigitalCommons@UMaine https://digitalcommons.library.umaine.edu/etd/2537 https://digitalcommons.library.umaine.edu/context/etd/article/3588/viewcontent/M_JAuger_Revisions.pdf Electronic Theses and Dissertations Reanalysis South Greenland North Atlantic Atmospheric Sciences Climate text 2016 ftmaineuniv 2023-05-04T18:02:37Z Global climate reanalysis models are regularly used in many scientific fields concerning climate and atmospheric observation. This thesis utilizes reanalysis models in two chapters in order to gain insight into North Atlantic climate teleconnections and their relation to precipitation across South Greenland. This first chapter of this thesis compares the four most recent reanalysis models – ECMWF Reanalysis Interim (ERA-I), NCEP Climate Forecast System Reanalysis (CFSR), JMA 55-year Reanalysis (JRA-55), and NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) – and develops from these models a monthly-mean ensemble average of common meteorological variables for the period 1979-2013. Results from this analysis shows that the reanalyses are in good agreement above the friction layer in the atmosphere, whereas significant model differences are found near the surface. The second chapter of this thesis utilizes the previous results to investigate the relative importance of the North Atlantic Oscillation (NAO) (high-frequency atmospheric) and the Atlantic Multidecadal Oscillation (AMO) (low-frequency sea-surface temperature) climate teleconnections as well as the Icelandic Low, Azores High, and blocking patterns in modulating precipitation across South Greenland. Key findings from this second chapter include: 1) years of extreme high and low precipitation in West Greenland are linked with the Icelandic Low, blocking patterns, and the westerly winds; and, 2) the long-term precipitation signal shows an increase of annual total precipitation and variability over southwest Greenland after the year 1995, suggesting an influence from the increase in both temperature and meridional flux of moisture and heat accompanied by a decrease in the zonal component of the westerlies. This work could be expanded upon in the future by identifying changes in synoptic fields during years of extreme high and low precipitation. Output from the four-member global climate reanalysis ensemble produced as part of this ... Text Greenland North Atlantic North Atlantic oscillation The University of Maine: DigitalCommons@UMaine Greenland Merra ENVELOPE(12.615,12.615,65.816,65.816)
institution Open Polar
collection The University of Maine: DigitalCommons@UMaine
op_collection_id ftmaineuniv
language unknown
topic Reanalysis
South Greenland
North Atlantic
Atmospheric Sciences
Climate
spellingShingle Reanalysis
South Greenland
North Atlantic
Atmospheric Sciences
Climate
Auger, Jeff
A Comparison of Global Climate Reanalysis and Climate of South Greenland and the North Atlantic
topic_facet Reanalysis
South Greenland
North Atlantic
Atmospheric Sciences
Climate
description Global climate reanalysis models are regularly used in many scientific fields concerning climate and atmospheric observation. This thesis utilizes reanalysis models in two chapters in order to gain insight into North Atlantic climate teleconnections and their relation to precipitation across South Greenland. This first chapter of this thesis compares the four most recent reanalysis models – ECMWF Reanalysis Interim (ERA-I), NCEP Climate Forecast System Reanalysis (CFSR), JMA 55-year Reanalysis (JRA-55), and NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) – and develops from these models a monthly-mean ensemble average of common meteorological variables for the period 1979-2013. Results from this analysis shows that the reanalyses are in good agreement above the friction layer in the atmosphere, whereas significant model differences are found near the surface. The second chapter of this thesis utilizes the previous results to investigate the relative importance of the North Atlantic Oscillation (NAO) (high-frequency atmospheric) and the Atlantic Multidecadal Oscillation (AMO) (low-frequency sea-surface temperature) climate teleconnections as well as the Icelandic Low, Azores High, and blocking patterns in modulating precipitation across South Greenland. Key findings from this second chapter include: 1) years of extreme high and low precipitation in West Greenland are linked with the Icelandic Low, blocking patterns, and the westerly winds; and, 2) the long-term precipitation signal shows an increase of annual total precipitation and variability over southwest Greenland after the year 1995, suggesting an influence from the increase in both temperature and meridional flux of moisture and heat accompanied by a decrease in the zonal component of the westerlies. This work could be expanded upon in the future by identifying changes in synoptic fields during years of extreme high and low precipitation. Output from the four-member global climate reanalysis ensemble produced as part of this ...
format Text
author Auger, Jeff
author_facet Auger, Jeff
author_sort Auger, Jeff
title A Comparison of Global Climate Reanalysis and Climate of South Greenland and the North Atlantic
title_short A Comparison of Global Climate Reanalysis and Climate of South Greenland and the North Atlantic
title_full A Comparison of Global Climate Reanalysis and Climate of South Greenland and the North Atlantic
title_fullStr A Comparison of Global Climate Reanalysis and Climate of South Greenland and the North Atlantic
title_full_unstemmed A Comparison of Global Climate Reanalysis and Climate of South Greenland and the North Atlantic
title_sort comparison of global climate reanalysis and climate of south greenland and the north atlantic
publisher DigitalCommons@UMaine
publishDate 2016
url https://digitalcommons.library.umaine.edu/etd/2537
https://digitalcommons.library.umaine.edu/context/etd/article/3588/viewcontent/M_JAuger_Revisions.pdf
long_lat ENVELOPE(12.615,12.615,65.816,65.816)
geographic Greenland
Merra
geographic_facet Greenland
Merra
genre Greenland
North Atlantic
North Atlantic oscillation
genre_facet Greenland
North Atlantic
North Atlantic oscillation
op_source Electronic Theses and Dissertations
op_relation https://digitalcommons.library.umaine.edu/etd/2537
https://digitalcommons.library.umaine.edu/context/etd/article/3588/viewcontent/M_JAuger_Revisions.pdf
_version_ 1768387713395851264