Using Temporal Variability in Optical Measurements to Quantify Phytoplankton Production, Particle Size, and Aggregation During the North Atlantic Spring Bloom

In this dissertation I develop, apply, and test methods for estimating primary productivity and particle size from low-power autonomous floats and gliders deployed during the three-month North Atlantic Bloom 2008 (NAB08) project in the Iceland Basin. I find the primary productivity methods to be acc...

Full description

Bibliographic Details
Main Author: Briggs, Nathan
Format: Text
Language:unknown
Published: DigitalCommons@UMaine 2014
Subjects:
Online Access:https://digitalcommons.library.umaine.edu/etd/2237
https://digitalcommons.library.umaine.edu/cgi/viewcontent.cgi?article=3277&context=etd
id ftmaineuniv:oai:digitalcommons.library.umaine.edu:etd-3277
record_format openpolar
spelling ftmaineuniv:oai:digitalcommons.library.umaine.edu:etd-3277 2023-05-15T16:52:15+02:00 Using Temporal Variability in Optical Measurements to Quantify Phytoplankton Production, Particle Size, and Aggregation During the North Atlantic Spring Bloom Briggs, Nathan 2014-12-01T08:00:00Z application/pdf https://digitalcommons.library.umaine.edu/etd/2237 https://digitalcommons.library.umaine.edu/cgi/viewcontent.cgi?article=3277&context=etd unknown DigitalCommons@UMaine https://digitalcommons.library.umaine.edu/etd/2237 https://digitalcommons.library.umaine.edu/cgi/viewcontent.cgi?article=3277&context=etd Electronic Theses and Dissertations Marine phytoplankton Algal blooms Oceanography text 2014 ftmaineuniv 2023-03-12T19:14:38Z In this dissertation I develop, apply, and test methods for estimating primary productivity and particle size from low-power autonomous floats and gliders deployed during the three-month North Atlantic Bloom 2008 (NAB08) project in the Iceland Basin. I find the primary productivity methods to be accurate within uncertainty bounds of ~30%, and similar in magnitude to previous studies of the North Atlantic bloom. I derive an entirely new method for autonomously estimating mean particle size in suspension using existing instruments. Laboratory testing quantitatively validates the method and field testing provides encouraging qualitative validation. I use a combination of the primary productivity estimates and mixed-layer budgets from a Lagrangian (water following) float to show that the spring phytoplankton bloom was initiated primarily by the classical bottom-up mechanism of shoaling mixed layer and increased light, and further show that most biomass accumulation was associated with two short (2-3 day) fair weather events (high light, low wind). The bloom was ended by a combination of silicate limitation, grazing, and sinking loss. I compare autonomous primary productivity timeseries with the rate of organic carbon flux through the mesopelagic (100-1000 m) at a much broader spatial scale (50 km) and higher temporal resolution (2 d) than traditional measurements permit, and use these results to help resolve a large discrepancy between previous estimates of the efficiency of carbon export and sequestration during the North Atlantic bloom. I also show a strong temporal correlation between the efficiency of carbon transport to depth and the mean size of particles at the surface. In addition to improving understanding of the North Atlantic spring bloom, this work provides and validates important methods that promise to improve global understanding of planktonic ecosystems and biogeochemistry when applied to the growing global array of autonomous platforms. Text Iceland North Atlantic The University of Maine: DigitalCommons@UMaine
institution Open Polar
collection The University of Maine: DigitalCommons@UMaine
op_collection_id ftmaineuniv
language unknown
topic Marine phytoplankton
Algal blooms
Oceanography
spellingShingle Marine phytoplankton
Algal blooms
Oceanography
Briggs, Nathan
Using Temporal Variability in Optical Measurements to Quantify Phytoplankton Production, Particle Size, and Aggregation During the North Atlantic Spring Bloom
topic_facet Marine phytoplankton
Algal blooms
Oceanography
description In this dissertation I develop, apply, and test methods for estimating primary productivity and particle size from low-power autonomous floats and gliders deployed during the three-month North Atlantic Bloom 2008 (NAB08) project in the Iceland Basin. I find the primary productivity methods to be accurate within uncertainty bounds of ~30%, and similar in magnitude to previous studies of the North Atlantic bloom. I derive an entirely new method for autonomously estimating mean particle size in suspension using existing instruments. Laboratory testing quantitatively validates the method and field testing provides encouraging qualitative validation. I use a combination of the primary productivity estimates and mixed-layer budgets from a Lagrangian (water following) float to show that the spring phytoplankton bloom was initiated primarily by the classical bottom-up mechanism of shoaling mixed layer and increased light, and further show that most biomass accumulation was associated with two short (2-3 day) fair weather events (high light, low wind). The bloom was ended by a combination of silicate limitation, grazing, and sinking loss. I compare autonomous primary productivity timeseries with the rate of organic carbon flux through the mesopelagic (100-1000 m) at a much broader spatial scale (50 km) and higher temporal resolution (2 d) than traditional measurements permit, and use these results to help resolve a large discrepancy between previous estimates of the efficiency of carbon export and sequestration during the North Atlantic bloom. I also show a strong temporal correlation between the efficiency of carbon transport to depth and the mean size of particles at the surface. In addition to improving understanding of the North Atlantic spring bloom, this work provides and validates important methods that promise to improve global understanding of planktonic ecosystems and biogeochemistry when applied to the growing global array of autonomous platforms.
format Text
author Briggs, Nathan
author_facet Briggs, Nathan
author_sort Briggs, Nathan
title Using Temporal Variability in Optical Measurements to Quantify Phytoplankton Production, Particle Size, and Aggregation During the North Atlantic Spring Bloom
title_short Using Temporal Variability in Optical Measurements to Quantify Phytoplankton Production, Particle Size, and Aggregation During the North Atlantic Spring Bloom
title_full Using Temporal Variability in Optical Measurements to Quantify Phytoplankton Production, Particle Size, and Aggregation During the North Atlantic Spring Bloom
title_fullStr Using Temporal Variability in Optical Measurements to Quantify Phytoplankton Production, Particle Size, and Aggregation During the North Atlantic Spring Bloom
title_full_unstemmed Using Temporal Variability in Optical Measurements to Quantify Phytoplankton Production, Particle Size, and Aggregation During the North Atlantic Spring Bloom
title_sort using temporal variability in optical measurements to quantify phytoplankton production, particle size, and aggregation during the north atlantic spring bloom
publisher DigitalCommons@UMaine
publishDate 2014
url https://digitalcommons.library.umaine.edu/etd/2237
https://digitalcommons.library.umaine.edu/cgi/viewcontent.cgi?article=3277&context=etd
genre Iceland
North Atlantic
genre_facet Iceland
North Atlantic
op_source Electronic Theses and Dissertations
op_relation https://digitalcommons.library.umaine.edu/etd/2237
https://digitalcommons.library.umaine.edu/cgi/viewcontent.cgi?article=3277&context=etd
_version_ 1766042400980992000