Some new results concerning Lorentz sequence spaces and Schur multipliers : characterization of some new Banach spaces of infinite matrices
This Licentiate thesis consists of an introduction and three papers, which deal with some new spaces of infinite matrices and Lorentz sequence spaces.In the introduction we give an overview of the area that serves as a frame for the rest of the thesis. In particular, a short description of Schur mul...
Main Author: | |
---|---|
Format: | Master Thesis |
Language: | English |
Published: |
Luleå tekniska universitet, Matematiska vetenskaper
2009
|
Subjects: | |
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-18094 |
id |
ftluleatu:oai:DiVA.org:ltu-18094 |
---|---|
record_format |
openpolar |
spelling |
ftluleatu:oai:DiVA.org:ltu-18094 2023-05-15T17:09:07+02:00 Some new results concerning Lorentz sequence spaces and Schur multipliers : characterization of some new Banach spaces of infinite matrices Marcoci, Anca-Nicoleta 2009 application/pdf http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-18094 eng eng Luleå tekniska universitet, Matematiska vetenskaper Luleå Licentiate thesis / Luleå University of Technology, 1402-1757 http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-18094 urn:isbn:978-91-86233-37-2 Local 6cb99e40-3004-11de-bd0f-000ea68e967b info:eu-repo/semantics/openAccess Mathematical Analysis Matematisk analys Licentiate thesis, comprehensive summary info:eu-repo/semantics/masterThesis text 2009 ftluleatu 2022-10-25T20:53:47Z This Licentiate thesis consists of an introduction and three papers, which deal with some new spaces of infinite matrices and Lorentz sequence spaces.In the introduction we give an overview of the area that serves as a frame for the rest of the thesis. In particular, a short description of Schur multipliers is given.In Paper 1 we prove that the space of all bounded operators on $\ell^2$ is contained in the space of all Schur multipliers on $B_w(\ell^2)$, where $B_w(\ell^2)$ is the space of linear (unbounded) operators on $\ell^2$ which map decreasing sequences from $\ell^2$ into sequences from $\ell^2$.In Paper 2 using a special kind of Schur multipliers and G. Bennett's factorization technique we characterize the upper triangular positive matrices from $B_w(\ell^p)$, $1In Paper 3 we consider the Lorentz spaces $\ell^{p,q}$ in the range $1\[\|x\|_{p,q}=\left(\sum_{n=1}^\infty (x^*)^q n^{\frac{q}{p}-1}\right)^\frac{1}{q}\]is only a quasi-norm. In particular, we derive the optimal constant in the triangle inequality for this quasi-norm, which leads us to consider the following decomposition norm:\[\|x\|_{(p,q)}=\inf\{\sum_k \|x^{(k)}\|_{p,q}\},\]where the infimum is taken over all finite representations $x=\sum_k x^{(k)}$. Godkänd; 2009; 20090423 (ancmar); LICENTIATSEMINARIUM Ämnesområde: Matematik/Mathematics Examinator: Professor Lars-Erik Persson, Luleå tekniska universitet Tid: Onsdag den 3 juni 2009 kl 10.15 Plats: D 2214, Luleå tekniska universitet Master Thesis Luleå Luleå Luleå University of Technology Publications (DiVA) Persson ENVELOPE(-58.400,-58.400,-64.200,-64.200) |
institution |
Open Polar |
collection |
Luleå University of Technology Publications (DiVA) |
op_collection_id |
ftluleatu |
language |
English |
topic |
Mathematical Analysis Matematisk analys |
spellingShingle |
Mathematical Analysis Matematisk analys Marcoci, Anca-Nicoleta Some new results concerning Lorentz sequence spaces and Schur multipliers : characterization of some new Banach spaces of infinite matrices |
topic_facet |
Mathematical Analysis Matematisk analys |
description |
This Licentiate thesis consists of an introduction and three papers, which deal with some new spaces of infinite matrices and Lorentz sequence spaces.In the introduction we give an overview of the area that serves as a frame for the rest of the thesis. In particular, a short description of Schur multipliers is given.In Paper 1 we prove that the space of all bounded operators on $\ell^2$ is contained in the space of all Schur multipliers on $B_w(\ell^2)$, where $B_w(\ell^2)$ is the space of linear (unbounded) operators on $\ell^2$ which map decreasing sequences from $\ell^2$ into sequences from $\ell^2$.In Paper 2 using a special kind of Schur multipliers and G. Bennett's factorization technique we characterize the upper triangular positive matrices from $B_w(\ell^p)$, $1In Paper 3 we consider the Lorentz spaces $\ell^{p,q}$ in the range $1\[\|x\|_{p,q}=\left(\sum_{n=1}^\infty (x^*)^q n^{\frac{q}{p}-1}\right)^\frac{1}{q}\]is only a quasi-norm. In particular, we derive the optimal constant in the triangle inequality for this quasi-norm, which leads us to consider the following decomposition norm:\[\|x\|_{(p,q)}=\inf\{\sum_k \|x^{(k)}\|_{p,q}\},\]where the infimum is taken over all finite representations $x=\sum_k x^{(k)}$. Godkänd; 2009; 20090423 (ancmar); LICENTIATSEMINARIUM Ämnesområde: Matematik/Mathematics Examinator: Professor Lars-Erik Persson, Luleå tekniska universitet Tid: Onsdag den 3 juni 2009 kl 10.15 Plats: D 2214, Luleå tekniska universitet |
format |
Master Thesis |
author |
Marcoci, Anca-Nicoleta |
author_facet |
Marcoci, Anca-Nicoleta |
author_sort |
Marcoci, Anca-Nicoleta |
title |
Some new results concerning Lorentz sequence spaces and Schur multipliers : characterization of some new Banach spaces of infinite matrices |
title_short |
Some new results concerning Lorentz sequence spaces and Schur multipliers : characterization of some new Banach spaces of infinite matrices |
title_full |
Some new results concerning Lorentz sequence spaces and Schur multipliers : characterization of some new Banach spaces of infinite matrices |
title_fullStr |
Some new results concerning Lorentz sequence spaces and Schur multipliers : characterization of some new Banach spaces of infinite matrices |
title_full_unstemmed |
Some new results concerning Lorentz sequence spaces and Schur multipliers : characterization of some new Banach spaces of infinite matrices |
title_sort |
some new results concerning lorentz sequence spaces and schur multipliers : characterization of some new banach spaces of infinite matrices |
publisher |
Luleå tekniska universitet, Matematiska vetenskaper |
publishDate |
2009 |
url |
http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-18094 |
long_lat |
ENVELOPE(-58.400,-58.400,-64.200,-64.200) |
geographic |
Persson |
geographic_facet |
Persson |
genre |
Luleå Luleå |
genre_facet |
Luleå Luleå |
op_relation |
Licentiate thesis / Luleå University of Technology, 1402-1757 http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-18094 urn:isbn:978-91-86233-37-2 Local 6cb99e40-3004-11de-bd0f-000ea68e967b |
op_rights |
info:eu-repo/semantics/openAccess |
_version_ |
1766065046319792128 |