Some new results concerning Lorentz sequence spaces and Schur multipliers : characterization of some new Banach spaces of infinite matrices

This Licentiate thesis consists of an introduction and three papers, which deal with some new spaces of infinite matrices and Lorentz sequence spaces.In the introduction we give an overview of the area that serves as a frame for the rest of the thesis. In particular, a short description of Schur mul...

Full description

Bibliographic Details
Main Author: Marcoci, Anca-Nicoleta
Format: Master Thesis
Language:English
Published: Luleå tekniska universitet, Matematiska vetenskaper 2009
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-18094
id ftluleatu:oai:DiVA.org:ltu-18094
record_format openpolar
spelling ftluleatu:oai:DiVA.org:ltu-18094 2023-05-15T17:09:07+02:00 Some new results concerning Lorentz sequence spaces and Schur multipliers : characterization of some new Banach spaces of infinite matrices Marcoci, Anca-Nicoleta 2009 application/pdf http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-18094 eng eng Luleå tekniska universitet, Matematiska vetenskaper Luleå Licentiate thesis / Luleå University of Technology, 1402-1757 http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-18094 urn:isbn:978-91-86233-37-2 Local 6cb99e40-3004-11de-bd0f-000ea68e967b info:eu-repo/semantics/openAccess Mathematical Analysis Matematisk analys Licentiate thesis, comprehensive summary info:eu-repo/semantics/masterThesis text 2009 ftluleatu 2022-10-25T20:53:47Z This Licentiate thesis consists of an introduction and three papers, which deal with some new spaces of infinite matrices and Lorentz sequence spaces.In the introduction we give an overview of the area that serves as a frame for the rest of the thesis. In particular, a short description of Schur multipliers is given.In Paper 1 we prove that the space of all bounded operators on $\ell^2$ is contained in the space of all Schur multipliers on $B_w(\ell^2)$, where $B_w(\ell^2)$ is the space of linear (unbounded) operators on $\ell^2$ which map decreasing sequences from $\ell^2$ into sequences from $\ell^2$.In Paper 2 using a special kind of Schur multipliers and G. Bennett's factorization technique we characterize the upper triangular positive matrices from $B_w(\ell^p)$, $1In Paper 3 we consider the Lorentz spaces $\ell^{p,q}$ in the range $1\[\|x\|_{p,q}=\left(\sum_{n=1}^\infty (x^*)^q n^{\frac{q}{p}-1}\right)^\frac{1}{q}\]is only a quasi-norm. In particular, we derive the optimal constant in the triangle inequality for this quasi-norm, which leads us to consider the following decomposition norm:\[\|x\|_{(p,q)}=\inf\{\sum_k \|x^{(k)}\|_{p,q}\},\]where the infimum is taken over all finite representations $x=\sum_k x^{(k)}$. Godkänd; 2009; 20090423 (ancmar); LICENTIATSEMINARIUM Ämnesområde: Matematik/Mathematics Examinator: Professor Lars-Erik Persson, Luleå tekniska universitet Tid: Onsdag den 3 juni 2009 kl 10.15 Plats: D 2214, Luleå tekniska universitet Master Thesis Luleå Luleå Luleå University of Technology Publications (DiVA) Persson ENVELOPE(-58.400,-58.400,-64.200,-64.200)
institution Open Polar
collection Luleå University of Technology Publications (DiVA)
op_collection_id ftluleatu
language English
topic Mathematical Analysis
Matematisk analys
spellingShingle Mathematical Analysis
Matematisk analys
Marcoci, Anca-Nicoleta
Some new results concerning Lorentz sequence spaces and Schur multipliers : characterization of some new Banach spaces of infinite matrices
topic_facet Mathematical Analysis
Matematisk analys
description This Licentiate thesis consists of an introduction and three papers, which deal with some new spaces of infinite matrices and Lorentz sequence spaces.In the introduction we give an overview of the area that serves as a frame for the rest of the thesis. In particular, a short description of Schur multipliers is given.In Paper 1 we prove that the space of all bounded operators on $\ell^2$ is contained in the space of all Schur multipliers on $B_w(\ell^2)$, where $B_w(\ell^2)$ is the space of linear (unbounded) operators on $\ell^2$ which map decreasing sequences from $\ell^2$ into sequences from $\ell^2$.In Paper 2 using a special kind of Schur multipliers and G. Bennett's factorization technique we characterize the upper triangular positive matrices from $B_w(\ell^p)$, $1In Paper 3 we consider the Lorentz spaces $\ell^{p,q}$ in the range $1\[\|x\|_{p,q}=\left(\sum_{n=1}^\infty (x^*)^q n^{\frac{q}{p}-1}\right)^\frac{1}{q}\]is only a quasi-norm. In particular, we derive the optimal constant in the triangle inequality for this quasi-norm, which leads us to consider the following decomposition norm:\[\|x\|_{(p,q)}=\inf\{\sum_k \|x^{(k)}\|_{p,q}\},\]where the infimum is taken over all finite representations $x=\sum_k x^{(k)}$. Godkänd; 2009; 20090423 (ancmar); LICENTIATSEMINARIUM Ämnesområde: Matematik/Mathematics Examinator: Professor Lars-Erik Persson, Luleå tekniska universitet Tid: Onsdag den 3 juni 2009 kl 10.15 Plats: D 2214, Luleå tekniska universitet
format Master Thesis
author Marcoci, Anca-Nicoleta
author_facet Marcoci, Anca-Nicoleta
author_sort Marcoci, Anca-Nicoleta
title Some new results concerning Lorentz sequence spaces and Schur multipliers : characterization of some new Banach spaces of infinite matrices
title_short Some new results concerning Lorentz sequence spaces and Schur multipliers : characterization of some new Banach spaces of infinite matrices
title_full Some new results concerning Lorentz sequence spaces and Schur multipliers : characterization of some new Banach spaces of infinite matrices
title_fullStr Some new results concerning Lorentz sequence spaces and Schur multipliers : characterization of some new Banach spaces of infinite matrices
title_full_unstemmed Some new results concerning Lorentz sequence spaces and Schur multipliers : characterization of some new Banach spaces of infinite matrices
title_sort some new results concerning lorentz sequence spaces and schur multipliers : characterization of some new banach spaces of infinite matrices
publisher Luleå tekniska universitet, Matematiska vetenskaper
publishDate 2009
url http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-18094
long_lat ENVELOPE(-58.400,-58.400,-64.200,-64.200)
geographic Persson
geographic_facet Persson
genre Luleå
Luleå
genre_facet Luleå
Luleå
op_relation Licentiate thesis / Luleå University of Technology, 1402-1757
http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-18094
urn:isbn:978-91-86233-37-2
Local 6cb99e40-3004-11de-bd0f-000ea68e967b
op_rights info:eu-repo/semantics/openAccess
_version_ 1766065046319792128