_version_ 1821683677661233152
author Chehrsimin, Tina
Eerola, Tuomas
Koivuniemi, Meeri
Auttila, Miina
Levänen, Riikka
Niemi, Marja
Kunnasranta, Mervi
Kälviäinen, Heikki
author2 Machine Vision and Pattern Recognition Laboratory, School of Engineering Science, Lappeenranta University of Technology
Department of Environmental and Biological Sciences, University of Eastern Finland
Parks & Wildlife Finland, State Forest Enterprise (Metsähallitus)
Luke / Luonnonvarat ja biotuotanto / Riista- ja kalavarat / Riistavarat (4100100513)
4100100513
author_facet Chehrsimin, Tina
Eerola, Tuomas
Koivuniemi, Meeri
Auttila, Miina
Levänen, Riikka
Niemi, Marja
Kunnasranta, Mervi
Kälviäinen, Heikki
author_sort Chehrsimin, Tina
collection Natural Resources Institute Finland: Jukuri
container_issue 2
container_start_page 146
container_title IET Computer Vision
container_volume 12
description In order to monitor an animal population and to track individual animals in a non-invasive way, identification of individual animals based on certain distinctive characteristics is necessary. In this study, automatic image-based individual identification of the endangered Saimaa ringed seal (Phoca hispida saimensis) is considered. Ringed seals have a distinctive permanent pelage pattern that is unique to each individual. This can be used as a basis for the identification process. The authors propose a framework that starts with segmentation of the seal from the background and proceeds to various postprocessing steps to make the pelage pattern more visible and the identification easier. Finally, two existing species independent individual identification methods are compared with a challenging data set of Saimaa ringed seal images. The results show that the segmentation and proposed post-processing steps increase the identification performance. 2017
format Article in Journal/Newspaper
genre Phoca hispida
Pusa hispida
ringed seal
genre_facet Phoca hispida
Pusa hispida
ringed seal
id ftluke:oai:jukuri.luke.fi:10024/541067
institution Open Polar
language English
op_collection_id ftluke
op_container_end_page 152
op_doi https://doi.org/10.1049/iet-cvi.2017.0082
op_relation IET Computer Vision
doi:10.1049/iet-cvi.2017.0082
1751-9632
2017
http://jukuri.luke.fi/handle/10024/541067
1751-9640
publisher The Institute of Engineering and Technology, IET
record_format openpolar
spelling ftluke:oai:jukuri.luke.fi:10024/541067 2025-01-17T00:17:59+00:00 Automatic individual identification of Saimaa ringed seals Chehrsimin, Tina Eerola, Tuomas Koivuniemi, Meeri Auttila, Miina Levänen, Riikka Niemi, Marja Kunnasranta, Mervi Kälviäinen, Heikki Machine Vision and Pattern Recognition Laboratory, School of Engineering Science, Lappeenranta University of Technology Department of Environmental and Biological Sciences, University of Eastern Finland Parks & Wildlife Finland, State Forest Enterprise (Metsähallitus) Luke / Luonnonvarat ja biotuotanto / Riista- ja kalavarat / Riistavarat (4100100513) 4100100513 Sekä painettu, että verkkojulkaisu 1-7 false http://jukuri.luke.fi/handle/10024/541067 eng eng The Institute of Engineering and Technology, IET IET Computer Vision doi:10.1049/iet-cvi.2017.0082 1751-9632 2017 http://jukuri.luke.fi/handle/10024/541067 1751-9640 seals Pusa hispida endangered Saimaa ringed seal Phoca hispida saimensis automatic image-based individual identification animal population monitoring segmentation distinctive permanent pelage pattern fi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research| ftluke https://doi.org/10.1049/iet-cvi.2017.0082 2023-09-12T20:26:29Z In order to monitor an animal population and to track individual animals in a non-invasive way, identification of individual animals based on certain distinctive characteristics is necessary. In this study, automatic image-based individual identification of the endangered Saimaa ringed seal (Phoca hispida saimensis) is considered. Ringed seals have a distinctive permanent pelage pattern that is unique to each individual. This can be used as a basis for the identification process. The authors propose a framework that starts with segmentation of the seal from the background and proceeds to various postprocessing steps to make the pelage pattern more visible and the identification easier. Finally, two existing species independent individual identification methods are compared with a challenging data set of Saimaa ringed seal images. The results show that the segmentation and proposed post-processing steps increase the identification performance. 2017 Article in Journal/Newspaper Phoca hispida Pusa hispida ringed seal Natural Resources Institute Finland: Jukuri IET Computer Vision 12 2 146 152
spellingShingle seals
Pusa hispida
endangered Saimaa ringed seal
Phoca hispida saimensis
automatic image-based individual identification
animal population monitoring
segmentation
distinctive permanent pelage pattern
Chehrsimin, Tina
Eerola, Tuomas
Koivuniemi, Meeri
Auttila, Miina
Levänen, Riikka
Niemi, Marja
Kunnasranta, Mervi
Kälviäinen, Heikki
Automatic individual identification of Saimaa ringed seals
title Automatic individual identification of Saimaa ringed seals
title_full Automatic individual identification of Saimaa ringed seals
title_fullStr Automatic individual identification of Saimaa ringed seals
title_full_unstemmed Automatic individual identification of Saimaa ringed seals
title_short Automatic individual identification of Saimaa ringed seals
title_sort automatic individual identification of saimaa ringed seals
topic seals
Pusa hispida
endangered Saimaa ringed seal
Phoca hispida saimensis
automatic image-based individual identification
animal population monitoring
segmentation
distinctive permanent pelage pattern
topic_facet seals
Pusa hispida
endangered Saimaa ringed seal
Phoca hispida saimensis
automatic image-based individual identification
animal population monitoring
segmentation
distinctive permanent pelage pattern
url http://jukuri.luke.fi/handle/10024/541067