Structural Polymorphism of Alzheimer's β-Amyloid Fibrils as Controlled by an E22 Switch: A Solid-State NMR Study
© 2016 American Chemical Society. The amyloid-β (Aβ) peptide of Alzheimer's disease (AD) forms polymorphic fibrils on the micrometer and molecular scales. Various fibril growth conditions have been identified to cause polymorphism, but the intrinsic amino acid sequence basis for this polymorphi...
Published in: | Journal of the American Chemical Society |
---|---|
Main Authors: | , , , , , , , , |
Format: | Text |
Language: | unknown |
Published: |
LSU Digital Commons
2016
|
Subjects: | |
Online Access: | https://digitalcommons.lsu.edu/chemistry_pubs/2480 https://doi.org/10.1021/jacs.6b03715 https://digitalcommons.lsu.edu/context/chemistry_pubs/article/3481/viewcontent/2480.pdf |
id |
ftlouisianastuir:oai:digitalcommons.lsu.edu:chemistry_pubs-3481 |
---|---|
record_format |
openpolar |
spelling |
ftlouisianastuir:oai:digitalcommons.lsu.edu:chemistry_pubs-3481 2023-06-11T04:08:25+02:00 Structural Polymorphism of Alzheimer's β-Amyloid Fibrils as Controlled by an E22 Switch: A Solid-State NMR Study Elkins, Matthew R. Wang, Tuo Nick, Mimi Jo, Hyunil Lemmin, Thomas Prusiner, Stanley B. Degrado, William F. Stöhr, Jan Hong, Mei 2016-08-10T07:00:00Z application/pdf https://digitalcommons.lsu.edu/chemistry_pubs/2480 https://doi.org/10.1021/jacs.6b03715 https://digitalcommons.lsu.edu/context/chemistry_pubs/article/3481/viewcontent/2480.pdf unknown LSU Digital Commons https://digitalcommons.lsu.edu/chemistry_pubs/2480 doi:10.1021/jacs.6b03715 https://digitalcommons.lsu.edu/context/chemistry_pubs/article/3481/viewcontent/2480.pdf Faculty Publications text 2016 ftlouisianastuir https://doi.org/10.1021/jacs.6b03715 2023-05-28T18:23:49Z © 2016 American Chemical Society. The amyloid-β (Aβ) peptide of Alzheimer's disease (AD) forms polymorphic fibrils on the micrometer and molecular scales. Various fibril growth conditions have been identified to cause polymorphism, but the intrinsic amino acid sequence basis for this polymorphism has been unclear. Several single-site mutations in the center of the Aβ sequence cause different disease phenotypes and fibrillization properties. The E22G (Arctic) mutant is found in familial AD and forms protofibrils more rapidly than wild-type Aβ. Here, we use solid-state NMR spectroscopy to investigate the structure, dynamics, hydration and morphology of Arctic E22G Aβ40 fibrils. 13C, 15N-labeled synthetic E22G Aβ40 peptides are studied and compared with wild-type and Osaka E22Δ Aβ40 fibrils. Under the same fibrillization conditions, Arctic Aβ40 exhibits a high degree of polymorphism, showing at least four sets of NMR chemical shifts for various residues, while the Osaka and wild-type Aβ40 fibrils show a single or a predominant set of chemical shifts. Thus, structural polymorphism is intrinsic to the Arctic E22G Aβ40 sequence. Chemical shifts and inter-residue contacts obtained from 2D correlation spectra indicate that one of the major Arctic conformers has surprisingly high structural similarity with wild-type Aβ42. 13C-1H dipolar order parameters, 1H rotating-frame spin-lattice relaxation times and water-to-protein spin diffusion experiments reveal substantial differences in the dynamics and hydration of Arctic, Osaka and wild-type Aβ40 fibrils. Together, these results strongly suggest that electrostatic interactions in the center of the Aβ peptide sequence play a crucial role in the three-dimensional fold of the fibrils, and by inference, fibril-induced neuronal toxicity and AD pathogenesis. Text Arctic LSU Digital Commons (Louisiana State University) Arctic Journal of the American Chemical Society 138 31 9840 9852 |
institution |
Open Polar |
collection |
LSU Digital Commons (Louisiana State University) |
op_collection_id |
ftlouisianastuir |
language |
unknown |
description |
© 2016 American Chemical Society. The amyloid-β (Aβ) peptide of Alzheimer's disease (AD) forms polymorphic fibrils on the micrometer and molecular scales. Various fibril growth conditions have been identified to cause polymorphism, but the intrinsic amino acid sequence basis for this polymorphism has been unclear. Several single-site mutations in the center of the Aβ sequence cause different disease phenotypes and fibrillization properties. The E22G (Arctic) mutant is found in familial AD and forms protofibrils more rapidly than wild-type Aβ. Here, we use solid-state NMR spectroscopy to investigate the structure, dynamics, hydration and morphology of Arctic E22G Aβ40 fibrils. 13C, 15N-labeled synthetic E22G Aβ40 peptides are studied and compared with wild-type and Osaka E22Δ Aβ40 fibrils. Under the same fibrillization conditions, Arctic Aβ40 exhibits a high degree of polymorphism, showing at least four sets of NMR chemical shifts for various residues, while the Osaka and wild-type Aβ40 fibrils show a single or a predominant set of chemical shifts. Thus, structural polymorphism is intrinsic to the Arctic E22G Aβ40 sequence. Chemical shifts and inter-residue contacts obtained from 2D correlation spectra indicate that one of the major Arctic conformers has surprisingly high structural similarity with wild-type Aβ42. 13C-1H dipolar order parameters, 1H rotating-frame spin-lattice relaxation times and water-to-protein spin diffusion experiments reveal substantial differences in the dynamics and hydration of Arctic, Osaka and wild-type Aβ40 fibrils. Together, these results strongly suggest that electrostatic interactions in the center of the Aβ peptide sequence play a crucial role in the three-dimensional fold of the fibrils, and by inference, fibril-induced neuronal toxicity and AD pathogenesis. |
format |
Text |
author |
Elkins, Matthew R. Wang, Tuo Nick, Mimi Jo, Hyunil Lemmin, Thomas Prusiner, Stanley B. Degrado, William F. Stöhr, Jan Hong, Mei |
spellingShingle |
Elkins, Matthew R. Wang, Tuo Nick, Mimi Jo, Hyunil Lemmin, Thomas Prusiner, Stanley B. Degrado, William F. Stöhr, Jan Hong, Mei Structural Polymorphism of Alzheimer's β-Amyloid Fibrils as Controlled by an E22 Switch: A Solid-State NMR Study |
author_facet |
Elkins, Matthew R. Wang, Tuo Nick, Mimi Jo, Hyunil Lemmin, Thomas Prusiner, Stanley B. Degrado, William F. Stöhr, Jan Hong, Mei |
author_sort |
Elkins, Matthew R. |
title |
Structural Polymorphism of Alzheimer's β-Amyloid Fibrils as Controlled by an E22 Switch: A Solid-State NMR Study |
title_short |
Structural Polymorphism of Alzheimer's β-Amyloid Fibrils as Controlled by an E22 Switch: A Solid-State NMR Study |
title_full |
Structural Polymorphism of Alzheimer's β-Amyloid Fibrils as Controlled by an E22 Switch: A Solid-State NMR Study |
title_fullStr |
Structural Polymorphism of Alzheimer's β-Amyloid Fibrils as Controlled by an E22 Switch: A Solid-State NMR Study |
title_full_unstemmed |
Structural Polymorphism of Alzheimer's β-Amyloid Fibrils as Controlled by an E22 Switch: A Solid-State NMR Study |
title_sort |
structural polymorphism of alzheimer's β-amyloid fibrils as controlled by an e22 switch: a solid-state nmr study |
publisher |
LSU Digital Commons |
publishDate |
2016 |
url |
https://digitalcommons.lsu.edu/chemistry_pubs/2480 https://doi.org/10.1021/jacs.6b03715 https://digitalcommons.lsu.edu/context/chemistry_pubs/article/3481/viewcontent/2480.pdf |
geographic |
Arctic |
geographic_facet |
Arctic |
genre |
Arctic |
genre_facet |
Arctic |
op_source |
Faculty Publications |
op_relation |
https://digitalcommons.lsu.edu/chemistry_pubs/2480 doi:10.1021/jacs.6b03715 https://digitalcommons.lsu.edu/context/chemistry_pubs/article/3481/viewcontent/2480.pdf |
op_doi |
https://doi.org/10.1021/jacs.6b03715 |
container_title |
Journal of the American Chemical Society |
container_volume |
138 |
container_issue |
31 |
container_start_page |
9840 |
op_container_end_page |
9852 |
_version_ |
1768381690725531648 |