Attribution of detected changes in streamflow using multiple working hypotheses

This paper revisits a widely cited study of the Boyne catchment in east Ireland that attributed greater streamflow from the mid-1970s to increased precipitation linked to a shift in the North Atlantic Oscillation. Using the method of multiple working hypotheses we explore a wider set of potential dr...

Full description

Bibliographic Details
Main Authors: Shaun Harrigan, Conor Murphy, J. Sweeney, Julia Hall, Robert Wilby
Format: Other Non-Article Part of Journal/Newspaper
Language:unknown
Published: 2014
Subjects:
Online Access:https://figshare.com/articles/journal_contribution/Attribution_of_detected_changes_in_streamflow_using_multiple_working_hypotheses/9482405
Description
Summary:This paper revisits a widely cited study of the Boyne catchment in east Ireland that attributed greater streamflow from the mid-1970s to increased precipitation linked to a shift in the North Atlantic Oscillation. Using the method of multiple working hypotheses we explore a wider set of potential drivers of hydrological change. Rainfall-runoff models are used to reconstruct streamflow to isolate the effect of climate, taking account of both model structure and parameter uncertainty. The Mann-Kendall test for monotonic trend and Pettitt change point test are applied to explore signatures of change. Contrary to earlier work, arterial drainage and simultaneous onset of field drainage in the 1970s and early 1980s are now invoked as the predominant drivers of change in annual mean and high flows within the Boyne. However, a change in precipitation regime is also present in March, thereby amplifying the effect of drainage. This new explanation posits that multiple drivers acting simultaneously were responsible for the observed change, with the relative contribution of each driver dependant on the timescale investigated. This work demonstrates that valuable insights can be gained from a systematic application of the method of multiple working hypotheses in an effort to move towards more rigorous attribution, which is an important part of managing emerging impacts on hydrological systems. © Author(s) 2014.