Estimates for Eigenvalues of Schrodinger Operators with Complex-Valued Potentials

New estimates for eigenvalues of non-self-adjoint multi-dimensional Schrodinger operators are obtained in terms of L (p) -norms of the potentials. The results cover and improve those known previously, in particular, due to Frank (Bull Lond Math Soc 43(4):745-750, 2011), Safronov (Proc Am Math Soc 13...

Full description

Bibliographic Details
Published in:Letters in Mathematical Physics
Main Author: Enblom, Alexandra
Format: Article in Journal/Newspaper
Language:English
Published: Linköpings universitet, Matematik och tillämpad matematik 2016
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-125143
https://doi.org/10.1007/s11005-015-0810-x
_version_ 1821575425938161664
author Enblom, Alexandra
author_facet Enblom, Alexandra
author_sort Enblom, Alexandra
collection LIU - Linköping University: Publications (DiVA)
container_issue 2
container_start_page 197
container_title Letters in Mathematical Physics
container_volume 106
description New estimates for eigenvalues of non-self-adjoint multi-dimensional Schrodinger operators are obtained in terms of L (p) -norms of the potentials. The results cover and improve those known previously, in particular, due to Frank (Bull Lond Math Soc 43(4):745-750, 2011), Safronov (Proc Am Math Soc 138(6):2107-2112, 2010), Laptev and Safronov (Commun Math Phys 292(1):29-54, 2009). We mention the estimations of the eigenvalues situated in the strip around the real axis (in particular, the essential spectrum). The method applied for this case involves the unitary group generated by the Laplacian. The results are extended to the more general case of polyharmonic operators. Schrodinger operators with slowly decaying potentials and belonging to weak Lebesgues classes are also considered.
format Article in Journal/Newspaper
genre laptev
genre_facet laptev
id ftlinkoepinguniv:oai:DiVA.org:liu-125143
institution Open Polar
language English
op_collection_id ftlinkoepinguniv
op_container_end_page 220
op_doi https://doi.org/10.1007/s11005-015-0810-x
op_relation Letters in Mathematical Physics, 0377-9017, 2016, 106:2, s. 197-220
ISI:000368734500003
op_rights info:eu-repo/semantics/openAccess
publishDate 2016
publisher Linköpings universitet, Matematik och tillämpad matematik
record_format openpolar
spelling ftlinkoepinguniv:oai:DiVA.org:liu-125143 2025-01-16T22:58:39+00:00 Estimates for Eigenvalues of Schrodinger Operators with Complex-Valued Potentials Enblom, Alexandra 2016 application/pdf http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-125143 https://doi.org/10.1007/s11005-015-0810-x eng eng Linköpings universitet, Matematik och tillämpad matematik Linköpings universitet, Tekniska fakulteten SPRINGER Letters in Mathematical Physics, 0377-9017, 2016, 106:2, s. 197-220 ISI:000368734500003 info:eu-repo/semantics/openAccess Schrodinger operators polyharmonic operators complex potential estimation of eigenvalues Mathematics Matematik Article in journal info:eu-repo/semantics/article text 2016 ftlinkoepinguniv https://doi.org/10.1007/s11005-015-0810-x 2024-12-17T14:28:57Z New estimates for eigenvalues of non-self-adjoint multi-dimensional Schrodinger operators are obtained in terms of L (p) -norms of the potentials. The results cover and improve those known previously, in particular, due to Frank (Bull Lond Math Soc 43(4):745-750, 2011), Safronov (Proc Am Math Soc 138(6):2107-2112, 2010), Laptev and Safronov (Commun Math Phys 292(1):29-54, 2009). We mention the estimations of the eigenvalues situated in the strip around the real axis (in particular, the essential spectrum). The method applied for this case involves the unitary group generated by the Laplacian. The results are extended to the more general case of polyharmonic operators. Schrodinger operators with slowly decaying potentials and belonging to weak Lebesgues classes are also considered. Article in Journal/Newspaper laptev LIU - Linköping University: Publications (DiVA) Letters in Mathematical Physics 106 2 197 220
spellingShingle Schrodinger operators
polyharmonic operators
complex potential
estimation of eigenvalues
Mathematics
Matematik
Enblom, Alexandra
Estimates for Eigenvalues of Schrodinger Operators with Complex-Valued Potentials
title Estimates for Eigenvalues of Schrodinger Operators with Complex-Valued Potentials
title_full Estimates for Eigenvalues of Schrodinger Operators with Complex-Valued Potentials
title_fullStr Estimates for Eigenvalues of Schrodinger Operators with Complex-Valued Potentials
title_full_unstemmed Estimates for Eigenvalues of Schrodinger Operators with Complex-Valued Potentials
title_short Estimates for Eigenvalues of Schrodinger Operators with Complex-Valued Potentials
title_sort estimates for eigenvalues of schrodinger operators with complex-valued potentials
topic Schrodinger operators
polyharmonic operators
complex potential
estimation of eigenvalues
Mathematics
Matematik
topic_facet Schrodinger operators
polyharmonic operators
complex potential
estimation of eigenvalues
Mathematics
Matematik
url http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-125143
https://doi.org/10.1007/s11005-015-0810-x