A statistical study of ion frictional heating observed by EISCAT

Results of a statistical survey of F-region ion frictional heating are presented, a survey which is based on over 4000 h of common programme observations taken by the European incoherent scatter (EISCAT) UHF radar facility. The criterion adopted in this study for the identification of ion frictional...

Full description

Bibliographic Details
Main Authors: J. A. Davies, M. Lester, I. W. McCrea
Format: Other Non-Article Part of Journal/Newspaper
Language:unknown
Published: 1997
Subjects:
Online Access:https://figshare.com/articles/journal_contribution/A_statistical_study_of_ion_frictional_heating_observed_by_EISCAT/10115432
Description
Summary:Results of a statistical survey of F-region ion frictional heating are presented, a survey which is based on over 4000 h of common programme observations taken by the European incoherent scatter (EISCAT) UHF radar facility. The criterion adopted in this study for the identification of ion frictional heating was that defined by McCrea et al., requiring an enhancement in the F-region field-parallel ion temperature exceeding 100 K over two consecutive integration periods, which was itself based on a selection criterion for frictional heating derived for the study of high-latitude F-region ion temperature observations from the Atmospheric Explorer-C satellite. In the present study, the diurnal distribution of ion frictional heating observed by EISCAT is established and, furthermore, its dependence on geomagnetic activity and the orientation of the interplanetary magnetic field (IMF) is investigated; results are interpreted with reference to corresponding distributions of enhanced ion velocity, again derived from the extended set of EISCAT UHF common programme observations. The radar, due to its location relative to the large-scale convection pattern, observes ion frictional heating principally during the night, although preferentially during the post-midnight hours where there is reduced coupling between the ion and neutral populations. There is an increased preponderance of frictional heating during intervals of high geomagnetic activity and for a southward z component of the IMF and, moreover, evidence of asymmetries introduced by the y component of the IMF.