The importance of the representation of air pollution emissions for the modeled distribution and radiative effects of black carbon in the Arctic
Aerosol particles can contribute to the Arctic amplification (AA) by direct and indirect radiative effects. Specifically, black carbon (BC) in the atmosphere, and when deposited on snow and sea ice, has a positive warming effect on the top-of-atmosphere (TOA) radiation balance during the polar day....
Main Authors: | , , , , , , , , , , , , , |
---|---|
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Katlenburg-Lindau : EGU
2019
|
Subjects: | |
Online Access: | https://oa.tib.eu/renate/handle/123456789/6974 https://doi.org/10.34657/6021 |
Summary: | Aerosol particles can contribute to the Arctic amplification (AA) by direct and indirect radiative effects. Specifically, black carbon (BC) in the atmosphere, and when deposited on snow and sea ice, has a positive warming effect on the top-of-atmosphere (TOA) radiation balance during the polar day. Current climate models, however, are still struggling to reproduce Arctic aerosol conditions.We present an evaluation study with the global aerosol-climate model ECHAM6.3-HAM2.3 to examine emission-related uncertainties in the BC distribution and the direct radiative effect of BC. The model results are comprehensively compared against the latest ground and airborne aerosol observations for the period 2005-2017, with a focus on BC. Four different setups of air pollution emissions are tested. The simulations in general match well with the observed amount and temporal variability in near-surface BC in the Arctic. Using actual daily instead of fixed biomass burning emissions is crucial for reproducing individual pollution events but has only a small influence on the seasonal cycle of BC. Compared with commonly used fixed anthropogenic emissions for the year 2000, an up-to-date inventory with transient air pollution emissions results in up to a 30% higher annual BC burden locally. This causes a higher annual mean all-sky net direct radiative effect of BC of over 0.1Wm-2 at the top of the atmosphere over the Arctic region (60-90° N), being locally more than 0.2Wm-2 over the eastern Arctic Ocean. We estimate BC in the Arctic as leading to an annual net gain of 0.5Wm-2 averaged over the Arctic region but to a local gain of up to 0.8Wm-2 by the direct radiative effect of atmospheric BC plus the effect by the BC-in-snow albedo reduction. Long-range transport is identified as one of the main sources of uncertainties for ECHAM6.3-HAM2.3, leading to an overestimation of BC in atmospheric layers above 500 hPa, especially in summer. This is related to a misrepresentation in wet removal in one identified case at least, which was ... |
---|