Combining atmospheric and snow radiative transfer models to assess the solar radiative effects of black carbon in the Arctic
The magnitude of solar radiative effects (cooling or warming) of black carbon (BC) particles embedded in the Arctic atmosphere and surface snow layer was explored on the basis of case studies. For this purpose, combined atmospheric and snow radiative transfer simulations were performed for cloudless...
Main Authors: | , , , , , , , |
---|---|
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Katlenburg-Lindau : EGU
2020
|
Subjects: | |
Online Access: | https://oa.tib.eu/renate/handle/123456789/6895 https://doi.org/10.34657/5942 |
id |
ftleibnizopen:oai:oai.leibnizopen.de:lUmiqIgBdbrxVwz6t_tP |
---|---|
record_format |
openpolar |
spelling |
ftleibnizopen:oai:oai.leibnizopen.de:lUmiqIgBdbrxVwz6t_tP 2023-07-02T03:31:18+02:00 Combining atmospheric and snow radiative transfer models to assess the solar radiative effects of black carbon in the Arctic Donth, Tobias Jäkel, Evelyn Ehrlich, André Heinold, Bernd Schacht, Jacob Herber, Andreas Zanatta, Marco Wendisch, Manfred 2020 application/pdf https://oa.tib.eu/renate/handle/123456789/6895 https://doi.org/10.34657/5942 eng eng Katlenburg-Lindau : EGU CC BY 4.0 Unported https://creativecommons.org/licenses/by/4.0/ Atmospheric chemistry and physics 20 (2020), Nr. 13 black carbon radiation budget radiative forcing radiative transfer snowpack solar radiation Alaska Arctic Arctic Ocean Greenland Spitsbergen Svalbard Svalbard and Jan Mayen United States 550 article Text 2020 ftleibnizopen https://doi.org/10.34657/5942 2023-06-11T23:20:04Z The magnitude of solar radiative effects (cooling or warming) of black carbon (BC) particles embedded in the Arctic atmosphere and surface snow layer was explored on the basis of case studies. For this purpose, combined atmospheric and snow radiative transfer simulations were performed for cloudless and cloudy conditions on the basis of BC mass concentrations measured in pristine early summer and more polluted early spring conditions. The area of interest is the remote sea-ice-covered Arctic Ocean in the vicinity of Spitsbergen, northern Greenland, and northern Alaska typically not affected by local pollution. To account for the radiative interactions between the black-carbon-containing snow surface layer and the atmosphere, an atmospheric and snow radiative transfer model were coupled iteratively. For pristine summer conditions (no atmospheric BC, minimum solar zenith angles of 55 ) and a representative BC particle mass concentration of 5 ng g -1 in the surface snow layer, a positive daily mean solar radiative forcing of + 0.2 W m -2 was calculated for the surface radiative budget. A higher load of atmospheric BC representing early springtime conditions results in a slightly negative mean radiative forcing at the surface of about - 0.05 W m -2 , even when the low BC mass concentration measured in the pristine early summer conditions was embedded in the surface snow layer. The total net surface radiative forcing combining the effects of BC embedded in the atmosphere and in the snow layer strongly depends on the snow optical properties (snow specific surface area and snow density). For the conditions over the Arctic Ocean analyzed in the simulations, it was found that the atmospheric heating rate by water vapor or clouds is 1 to 2 orders of magnitude larger than that by atmospheric BC. Similarly, the daily mean total heating rate (6 K d -1 ) within a snowpack due to absorption by the ice was more than 1 order of magnitude larger than that of atmospheric BC (0.2 K d -1 ). Also, it was shown that the cooling by ... Article in Journal/Newspaper Arctic Arctic Ocean black carbon Greenland Jan Mayen Sea ice Svalbard Alaska Spitsbergen LeibnizOpen (The Leibniz Association) Arctic Arctic Ocean Svalbard Greenland Jan Mayen Svalbard ENVELOPE(20.000,20.000,78.000,78.000) |
institution |
Open Polar |
collection |
LeibnizOpen (The Leibniz Association) |
op_collection_id |
ftleibnizopen |
language |
English |
topic |
black carbon radiation budget radiative forcing radiative transfer snowpack solar radiation Alaska Arctic Arctic Ocean Greenland Spitsbergen Svalbard Svalbard and Jan Mayen United States 550 |
spellingShingle |
black carbon radiation budget radiative forcing radiative transfer snowpack solar radiation Alaska Arctic Arctic Ocean Greenland Spitsbergen Svalbard Svalbard and Jan Mayen United States 550 Donth, Tobias Jäkel, Evelyn Ehrlich, André Heinold, Bernd Schacht, Jacob Herber, Andreas Zanatta, Marco Wendisch, Manfred Combining atmospheric and snow radiative transfer models to assess the solar radiative effects of black carbon in the Arctic |
topic_facet |
black carbon radiation budget radiative forcing radiative transfer snowpack solar radiation Alaska Arctic Arctic Ocean Greenland Spitsbergen Svalbard Svalbard and Jan Mayen United States 550 |
description |
The magnitude of solar radiative effects (cooling or warming) of black carbon (BC) particles embedded in the Arctic atmosphere and surface snow layer was explored on the basis of case studies. For this purpose, combined atmospheric and snow radiative transfer simulations were performed for cloudless and cloudy conditions on the basis of BC mass concentrations measured in pristine early summer and more polluted early spring conditions. The area of interest is the remote sea-ice-covered Arctic Ocean in the vicinity of Spitsbergen, northern Greenland, and northern Alaska typically not affected by local pollution. To account for the radiative interactions between the black-carbon-containing snow surface layer and the atmosphere, an atmospheric and snow radiative transfer model were coupled iteratively. For pristine summer conditions (no atmospheric BC, minimum solar zenith angles of 55 ) and a representative BC particle mass concentration of 5 ng g -1 in the surface snow layer, a positive daily mean solar radiative forcing of + 0.2 W m -2 was calculated for the surface radiative budget. A higher load of atmospheric BC representing early springtime conditions results in a slightly negative mean radiative forcing at the surface of about - 0.05 W m -2 , even when the low BC mass concentration measured in the pristine early summer conditions was embedded in the surface snow layer. The total net surface radiative forcing combining the effects of BC embedded in the atmosphere and in the snow layer strongly depends on the snow optical properties (snow specific surface area and snow density). For the conditions over the Arctic Ocean analyzed in the simulations, it was found that the atmospheric heating rate by water vapor or clouds is 1 to 2 orders of magnitude larger than that by atmospheric BC. Similarly, the daily mean total heating rate (6 K d -1 ) within a snowpack due to absorption by the ice was more than 1 order of magnitude larger than that of atmospheric BC (0.2 K d -1 ). Also, it was shown that the cooling by ... |
format |
Article in Journal/Newspaper |
author |
Donth, Tobias Jäkel, Evelyn Ehrlich, André Heinold, Bernd Schacht, Jacob Herber, Andreas Zanatta, Marco Wendisch, Manfred |
author_facet |
Donth, Tobias Jäkel, Evelyn Ehrlich, André Heinold, Bernd Schacht, Jacob Herber, Andreas Zanatta, Marco Wendisch, Manfred |
author_sort |
Donth, Tobias |
title |
Combining atmospheric and snow radiative transfer models to assess the solar radiative effects of black carbon in the Arctic |
title_short |
Combining atmospheric and snow radiative transfer models to assess the solar radiative effects of black carbon in the Arctic |
title_full |
Combining atmospheric and snow radiative transfer models to assess the solar radiative effects of black carbon in the Arctic |
title_fullStr |
Combining atmospheric and snow radiative transfer models to assess the solar radiative effects of black carbon in the Arctic |
title_full_unstemmed |
Combining atmospheric and snow radiative transfer models to assess the solar radiative effects of black carbon in the Arctic |
title_sort |
combining atmospheric and snow radiative transfer models to assess the solar radiative effects of black carbon in the arctic |
publisher |
Katlenburg-Lindau : EGU |
publishDate |
2020 |
url |
https://oa.tib.eu/renate/handle/123456789/6895 https://doi.org/10.34657/5942 |
long_lat |
ENVELOPE(20.000,20.000,78.000,78.000) |
geographic |
Arctic Arctic Ocean Svalbard Greenland Jan Mayen Svalbard |
geographic_facet |
Arctic Arctic Ocean Svalbard Greenland Jan Mayen Svalbard |
genre |
Arctic Arctic Ocean black carbon Greenland Jan Mayen Sea ice Svalbard Alaska Spitsbergen |
genre_facet |
Arctic Arctic Ocean black carbon Greenland Jan Mayen Sea ice Svalbard Alaska Spitsbergen |
op_source |
Atmospheric chemistry and physics 20 (2020), Nr. 13 |
op_rights |
CC BY 4.0 Unported https://creativecommons.org/licenses/by/4.0/ |
op_doi |
https://doi.org/10.34657/5942 |
_version_ |
1770270674181423104 |