Intercomparison of middle-atmospheric wind in observations and models

Wind profile information throughout the entire upper stratosphere and lower mesosphere (USLM) is important for the understanding of atmospheric dynamics but became available only recently, thanks to developments in remote sensing techniques and modelling approaches. However, as wind measurements fro...

Full description

Bibliographic Details
Main Authors: Rüfenacht, Rolf, Baumgarten, Gerd, Hildebrand, Jens, Schranz, Franziska, Matthias, Vivien, Stober, Gunter, Lübken, Franz-Josef, Kämpfer, Niklaus
Format: Article in Journal/Newspaper
Language:English
Published: Katlenburg-Lindau : Copernicus 2018
Subjects:
550
Online Access:https://oa.tib.eu/renate/handle/123456789/10687
https://doi.org/10.34657/9723
Description
Summary:Wind profile information throughout the entire upper stratosphere and lower mesosphere (USLM) is important for the understanding of atmospheric dynamics but became available only recently, thanks to developments in remote sensing techniques and modelling approaches. However, as wind measurements from these altitudes are rare, such products have generally not yet been validated with (other) observations. This paper presents the first long-term intercomparison of wind observations in the USLM by co-located microwave radiometer and lidar instruments at Andenes, Norway (69.3∘ N, 16.0∘ E). Good correspondence has been found at all altitudes for both horizontal wind components for nighttime as well as daylight conditions. Biases are mostly within the random errors and do not exceed 5–10 m s−1, which is less than 10 % of the typically encountered wind speeds. Moreover, comparisons of the observations with the major reanalyses and models covering this altitude range are shown, in particular with the recently released ERA5, ECMWF's first reanalysis to cover the whole USLM region. The agreement between models and observations is very good in general, but temporally limited occurrences of pronounced discrepancies (up to 40 m s−1) exist. In the article's Appendix the possibility of obtaining nighttime wind information about the mesopause region by means of microwave radiometry is investigated. publishedVersion