Identifying environmental controls on vegetation greenness phenology through model-data integration
Existing dynamic global vegetation models (DGVMs) have a limited ability in reproducing phenology and decadal dynamics of vegetation greenness as observed by satellites. These limitations in reproducing observations reflect a poor understanding and description of the environmental controls on phenol...
Main Authors: | , , , , , , |
---|---|
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
München : European Geopyhsical Union
2014
|
Subjects: | |
Online Access: | https://doi.org/10.34657/1024 https://oa.tib.eu/renate/handle/123456789/536 |
id |
ftleibnizopen:oai:oai.leibnizopen.de:U4f5pIkBdbrxVwz6B6w- |
---|---|
record_format |
openpolar |
spelling |
ftleibnizopen:oai:oai.leibnizopen.de:U4f5pIkBdbrxVwz6B6w- 2023-08-20T03:59:21+02:00 Identifying environmental controls on vegetation greenness phenology through model-data integration Forkel, M. Carvalhais, N. Schaphoff, S. v. Bloh, W. Migliavacca, M. Thurner, M. Thonicke, K. 2014 application/pdf https://doi.org/10.34657/1024 https://oa.tib.eu/renate/handle/123456789/536 eng eng München : European Geopyhsical Union CC BY 3.0 Unported https://creativecommons.org/licenses/by/3.0/ Biogeosciences, Volume 11, Issue 23, Page 7025-7050 Biogeochemistry boreal forest data set decadal variation ecological modeling environmental conditions growing season net primary production phenology seasonal variation vegetation dynamics water availability 550 article Text 2014 ftleibnizopen https://doi.org/10.34657/1024 2023-07-30T23:46:06Z Existing dynamic global vegetation models (DGVMs) have a limited ability in reproducing phenology and decadal dynamics of vegetation greenness as observed by satellites. These limitations in reproducing observations reflect a poor understanding and description of the environmental controls on phenology, which strongly influence the ability to simulate longer-term vegetation dynamics, e.g. carbon allocation. Combining DGVMs with observational data sets can potentially help to revise current modelling approaches and thus enhance the understanding of processes that control seasonal to long-term vegetation greenness dynamics. Here we implemented a new phenology model within the LPJmL (Lund Potsdam Jena managed lands) DGVM and integrated several observational data sets to improve the ability of the model in reproducing satellite-derived time series of vegetation greenness. Specifically, we optimized LPJmL parameters against observational time series of the fraction of absorbed photosynthetic active radiation (FAPAR), albedo and gross primary production to identify the main environmental controls for seasonal vegetation greenness dynamics. We demonstrated that LPJmL with new phenology and optimized parameters better reproduces seasonality, inter-annual variability and trends of vegetation greenness. Our results indicate that soil water availability is an important control on vegetation phenology not only in water-limited biomes but also in boreal forests and the Arctic tundra. Whereas water availability controls phenology in water-limited ecosystems during the entire growing season, water availability co-modulates jointly with temperature the beginning of the growing season in boreal and Arctic regions. Additionally, water availability contributes to better explain decadal greening trends in the Sahel and browning trends in boreal forests. These results emphasize the importance of considering water availability in a new generation of phenology modules in DGVMs in order to correctly reproduce observed ... Article in Journal/Newspaper albedo Arctic Tundra LeibnizOpen (The Leibniz Association) Arctic Browning ENVELOPE(164.050,164.050,-74.617,-74.617) |
institution |
Open Polar |
collection |
LeibnizOpen (The Leibniz Association) |
op_collection_id |
ftleibnizopen |
language |
English |
topic |
Biogeochemistry boreal forest data set decadal variation ecological modeling environmental conditions growing season net primary production phenology seasonal variation vegetation dynamics water availability 550 |
spellingShingle |
Biogeochemistry boreal forest data set decadal variation ecological modeling environmental conditions growing season net primary production phenology seasonal variation vegetation dynamics water availability 550 Forkel, M. Carvalhais, N. Schaphoff, S. v. Bloh, W. Migliavacca, M. Thurner, M. Thonicke, K. Identifying environmental controls on vegetation greenness phenology through model-data integration |
topic_facet |
Biogeochemistry boreal forest data set decadal variation ecological modeling environmental conditions growing season net primary production phenology seasonal variation vegetation dynamics water availability 550 |
description |
Existing dynamic global vegetation models (DGVMs) have a limited ability in reproducing phenology and decadal dynamics of vegetation greenness as observed by satellites. These limitations in reproducing observations reflect a poor understanding and description of the environmental controls on phenology, which strongly influence the ability to simulate longer-term vegetation dynamics, e.g. carbon allocation. Combining DGVMs with observational data sets can potentially help to revise current modelling approaches and thus enhance the understanding of processes that control seasonal to long-term vegetation greenness dynamics. Here we implemented a new phenology model within the LPJmL (Lund Potsdam Jena managed lands) DGVM and integrated several observational data sets to improve the ability of the model in reproducing satellite-derived time series of vegetation greenness. Specifically, we optimized LPJmL parameters against observational time series of the fraction of absorbed photosynthetic active radiation (FAPAR), albedo and gross primary production to identify the main environmental controls for seasonal vegetation greenness dynamics. We demonstrated that LPJmL with new phenology and optimized parameters better reproduces seasonality, inter-annual variability and trends of vegetation greenness. Our results indicate that soil water availability is an important control on vegetation phenology not only in water-limited biomes but also in boreal forests and the Arctic tundra. Whereas water availability controls phenology in water-limited ecosystems during the entire growing season, water availability co-modulates jointly with temperature the beginning of the growing season in boreal and Arctic regions. Additionally, water availability contributes to better explain decadal greening trends in the Sahel and browning trends in boreal forests. These results emphasize the importance of considering water availability in a new generation of phenology modules in DGVMs in order to correctly reproduce observed ... |
format |
Article in Journal/Newspaper |
author |
Forkel, M. Carvalhais, N. Schaphoff, S. v. Bloh, W. Migliavacca, M. Thurner, M. Thonicke, K. |
author_facet |
Forkel, M. Carvalhais, N. Schaphoff, S. v. Bloh, W. Migliavacca, M. Thurner, M. Thonicke, K. |
author_sort |
Forkel, M. |
title |
Identifying environmental controls on vegetation greenness phenology through model-data integration |
title_short |
Identifying environmental controls on vegetation greenness phenology through model-data integration |
title_full |
Identifying environmental controls on vegetation greenness phenology through model-data integration |
title_fullStr |
Identifying environmental controls on vegetation greenness phenology through model-data integration |
title_full_unstemmed |
Identifying environmental controls on vegetation greenness phenology through model-data integration |
title_sort |
identifying environmental controls on vegetation greenness phenology through model-data integration |
publisher |
München : European Geopyhsical Union |
publishDate |
2014 |
url |
https://doi.org/10.34657/1024 https://oa.tib.eu/renate/handle/123456789/536 |
long_lat |
ENVELOPE(164.050,164.050,-74.617,-74.617) |
geographic |
Arctic Browning |
geographic_facet |
Arctic Browning |
genre |
albedo Arctic Tundra |
genre_facet |
albedo Arctic Tundra |
op_source |
Biogeosciences, Volume 11, Issue 23, Page 7025-7050 |
op_rights |
CC BY 3.0 Unported https://creativecommons.org/licenses/by/3.0/ |
op_doi |
https://doi.org/10.34657/1024 |
_version_ |
1774712390633390080 |