Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories
Aerosol-cloud interactions (ACI) constitute the single largest uncertainty in anthropogenic radiative forcing. To reduce the uncertainties and gain more confidence in the simulation of ACI, models need to be evaluated against observations, in particular against measurements of cloud condensation nuc...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Katlenburg-Lindau : EGU
2018
|
Subjects: | |
Online Access: | https://oa.tib.eu/renate/handle/123456789/11725 https://doi.org/10.34657/10758 |
id |
ftleibnizopen:oai:oai.leibnizopen.de:ER6CMYsBBwLIz6xGJRA2 |
---|---|
record_format |
openpolar |
spelling |
ftleibnizopen:oai:oai.leibnizopen.de:ER6CMYsBBwLIz6xGJRA2 2023-11-12T04:14:05+01:00 Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories Schmale, Julia Henning, Silvia Decesari, Stefano Henzing, Bas Keskinen, Helmi Sellegri, Karine Ovadnevaite, Jurgita Pöhlker, Mira L. Brito, Joel Bougiatioti, Aikaterini Kristensson, Adam Kalivitis, Nikos Stavroulas, Iasonas Carbone, Samara Jefferson, Anne Park, Minsu Schlag, Patrick Iwamoto, Yoko Aalto, Pasi Äijälä, Mikko Bukowiecki, Nicolas Ehn, Mikael Frank, Göran Fröhlich, Roman Frumau, Arnoud Herrmann, Erik Herrmann, Hartmut Holzinger, Rupert Kos, Gerard Kulmala, Markku Mihalopoulos, Nikolaos Nenes, Athanasios O'Dowd, Colin Petäjä, Tuukka Picard, David Pöhlker, Christopher Pöschl, Ulrich Poulain, Laurent Prévôt, André Stephan Henry Swietlicki, Erik Andreae, Meinrat O. Artaxo, Paulo Wiedensohler, Alfred Ogren, John Matsuki, Atsushi Yum, Seong Soo Stratmann, Frank Baltensperger, Urs Gysel, Martin 2018 application/pdf https://oa.tib.eu/renate/handle/123456789/11725 https://doi.org/10.34657/10758 eng eng Katlenburg-Lindau : EGU CC BY 4.0 Unported https://creativecommons.org/licenses/by/4.0 Atmospheric chemistry and physics 18 (2018), Nr. 4 aerosol chemical composition cloud condensation nucleus coastal zone concentration (composition) hygroscopicity particle size radiative forcing size distribution supersaturation temporal variation Connacht Galway [(CNT) Connacht] Ireland Mace Head 550 article Text 2018 ftleibnizopen https://doi.org/10.34657/10758 2023-10-15T23:35:59Z Aerosol-cloud interactions (ACI) constitute the single largest uncertainty in anthropogenic radiative forcing. To reduce the uncertainties and gain more confidence in the simulation of ACI, models need to be evaluated against observations, in particular against measurements of cloud condensation nuclei (CCN). Here we present a data set - ready to be used for model validation - of long-term observations of CCN number concentrations, particle number size distributions and chemical composition from 12 sites on 3 continents. Studied environments include coastal background, rural background, alpine sites, remote forests and an urban surrounding. Expectedly, CCN characteristics are highly variable across site categories. However, they also vary within them, most strongly in the coastal background group, where CCN number concentrations can vary by up to a factor of 30 within one season. In terms of particle activation behaviour, most continental stations exhibit very similar activation ratios (relative to particles 20nm) across the range of 0.1 to 1.0% supersaturation. At the coastal sites the transition from particles being CCN inactive to becoming CCN active occurs over a wider range of the supersaturation spectrum. Several stations show strong seasonal cycles of CCN number concentrations and particle number size distributions, e.g. at Barrow (Arctic haze in spring), at the alpine stations (stronger influence of polluted boundary layer air masses in summer), the rain forest (wet and dry season) or Finokalia (wildfire influence in autumn). The rural background and urban sites exhibit relatively little variability throughout the year, while short-term variability can be high especially at the urban site. The average hygroscopicity parameter, calculated from the chemical composition of submicron particles was highest at the coastal site of Mace Head (0.6) and lowest at the rain forest station ATTO (0.2-0.3). We performed closure studies based on -Köhler theory to predict CCN number concentrations. The ratio of predicted ... Article in Journal/Newspaper Arctic Unknown Arctic Mace ENVELOPE(155.883,155.883,-81.417,-81.417) |
institution |
Open Polar |
collection |
Unknown |
op_collection_id |
ftleibnizopen |
language |
English |
topic |
aerosol chemical composition cloud condensation nucleus coastal zone concentration (composition) hygroscopicity particle size radiative forcing size distribution supersaturation temporal variation Connacht Galway [(CNT) Connacht] Ireland Mace Head 550 |
spellingShingle |
aerosol chemical composition cloud condensation nucleus coastal zone concentration (composition) hygroscopicity particle size radiative forcing size distribution supersaturation temporal variation Connacht Galway [(CNT) Connacht] Ireland Mace Head 550 Schmale, Julia Henning, Silvia Decesari, Stefano Henzing, Bas Keskinen, Helmi Sellegri, Karine Ovadnevaite, Jurgita Pöhlker, Mira L. Brito, Joel Bougiatioti, Aikaterini Kristensson, Adam Kalivitis, Nikos Stavroulas, Iasonas Carbone, Samara Jefferson, Anne Park, Minsu Schlag, Patrick Iwamoto, Yoko Aalto, Pasi Äijälä, Mikko Bukowiecki, Nicolas Ehn, Mikael Frank, Göran Fröhlich, Roman Frumau, Arnoud Herrmann, Erik Herrmann, Hartmut Holzinger, Rupert Kos, Gerard Kulmala, Markku Mihalopoulos, Nikolaos Nenes, Athanasios O'Dowd, Colin Petäjä, Tuukka Picard, David Pöhlker, Christopher Pöschl, Ulrich Poulain, Laurent Prévôt, André Stephan Henry Swietlicki, Erik Andreae, Meinrat O. Artaxo, Paulo Wiedensohler, Alfred Ogren, John Matsuki, Atsushi Yum, Seong Soo Stratmann, Frank Baltensperger, Urs Gysel, Martin Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories |
topic_facet |
aerosol chemical composition cloud condensation nucleus coastal zone concentration (composition) hygroscopicity particle size radiative forcing size distribution supersaturation temporal variation Connacht Galway [(CNT) Connacht] Ireland Mace Head 550 |
description |
Aerosol-cloud interactions (ACI) constitute the single largest uncertainty in anthropogenic radiative forcing. To reduce the uncertainties and gain more confidence in the simulation of ACI, models need to be evaluated against observations, in particular against measurements of cloud condensation nuclei (CCN). Here we present a data set - ready to be used for model validation - of long-term observations of CCN number concentrations, particle number size distributions and chemical composition from 12 sites on 3 continents. Studied environments include coastal background, rural background, alpine sites, remote forests and an urban surrounding. Expectedly, CCN characteristics are highly variable across site categories. However, they also vary within them, most strongly in the coastal background group, where CCN number concentrations can vary by up to a factor of 30 within one season. In terms of particle activation behaviour, most continental stations exhibit very similar activation ratios (relative to particles 20nm) across the range of 0.1 to 1.0% supersaturation. At the coastal sites the transition from particles being CCN inactive to becoming CCN active occurs over a wider range of the supersaturation spectrum. Several stations show strong seasonal cycles of CCN number concentrations and particle number size distributions, e.g. at Barrow (Arctic haze in spring), at the alpine stations (stronger influence of polluted boundary layer air masses in summer), the rain forest (wet and dry season) or Finokalia (wildfire influence in autumn). The rural background and urban sites exhibit relatively little variability throughout the year, while short-term variability can be high especially at the urban site. The average hygroscopicity parameter, calculated from the chemical composition of submicron particles was highest at the coastal site of Mace Head (0.6) and lowest at the rain forest station ATTO (0.2-0.3). We performed closure studies based on -Köhler theory to predict CCN number concentrations. The ratio of predicted ... |
format |
Article in Journal/Newspaper |
author |
Schmale, Julia Henning, Silvia Decesari, Stefano Henzing, Bas Keskinen, Helmi Sellegri, Karine Ovadnevaite, Jurgita Pöhlker, Mira L. Brito, Joel Bougiatioti, Aikaterini Kristensson, Adam Kalivitis, Nikos Stavroulas, Iasonas Carbone, Samara Jefferson, Anne Park, Minsu Schlag, Patrick Iwamoto, Yoko Aalto, Pasi Äijälä, Mikko Bukowiecki, Nicolas Ehn, Mikael Frank, Göran Fröhlich, Roman Frumau, Arnoud Herrmann, Erik Herrmann, Hartmut Holzinger, Rupert Kos, Gerard Kulmala, Markku Mihalopoulos, Nikolaos Nenes, Athanasios O'Dowd, Colin Petäjä, Tuukka Picard, David Pöhlker, Christopher Pöschl, Ulrich Poulain, Laurent Prévôt, André Stephan Henry Swietlicki, Erik Andreae, Meinrat O. Artaxo, Paulo Wiedensohler, Alfred Ogren, John Matsuki, Atsushi Yum, Seong Soo Stratmann, Frank Baltensperger, Urs Gysel, Martin |
author_facet |
Schmale, Julia Henning, Silvia Decesari, Stefano Henzing, Bas Keskinen, Helmi Sellegri, Karine Ovadnevaite, Jurgita Pöhlker, Mira L. Brito, Joel Bougiatioti, Aikaterini Kristensson, Adam Kalivitis, Nikos Stavroulas, Iasonas Carbone, Samara Jefferson, Anne Park, Minsu Schlag, Patrick Iwamoto, Yoko Aalto, Pasi Äijälä, Mikko Bukowiecki, Nicolas Ehn, Mikael Frank, Göran Fröhlich, Roman Frumau, Arnoud Herrmann, Erik Herrmann, Hartmut Holzinger, Rupert Kos, Gerard Kulmala, Markku Mihalopoulos, Nikolaos Nenes, Athanasios O'Dowd, Colin Petäjä, Tuukka Picard, David Pöhlker, Christopher Pöschl, Ulrich Poulain, Laurent Prévôt, André Stephan Henry Swietlicki, Erik Andreae, Meinrat O. Artaxo, Paulo Wiedensohler, Alfred Ogren, John Matsuki, Atsushi Yum, Seong Soo Stratmann, Frank Baltensperger, Urs Gysel, Martin |
author_sort |
Schmale, Julia |
title |
Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories |
title_short |
Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories |
title_full |
Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories |
title_fullStr |
Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories |
title_full_unstemmed |
Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories |
title_sort |
long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories |
publisher |
Katlenburg-Lindau : EGU |
publishDate |
2018 |
url |
https://oa.tib.eu/renate/handle/123456789/11725 https://doi.org/10.34657/10758 |
long_lat |
ENVELOPE(155.883,155.883,-81.417,-81.417) |
geographic |
Arctic Mace |
geographic_facet |
Arctic Mace |
genre |
Arctic |
genre_facet |
Arctic |
op_source |
Atmospheric chemistry and physics 18 (2018), Nr. 4 |
op_rights |
CC BY 4.0 Unported https://creativecommons.org/licenses/by/4.0 |
op_doi |
https://doi.org/10.34657/10758 |
_version_ |
1782331796799619072 |