Wildfire smoke, Arctic haze, and aerosol effects on mixed-phase and cirrus clouds over the North Pole region during MOSAiC: an introduction

An advanced multiwavelength polarization Raman lidar was operated aboard the icebreaker Polarstern during the MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition to continuously monitor aerosol and cloud layers in the central Arctic up to 30gkm height. The expe...

Full description

Bibliographic Details
Main Authors: Engelmann, Ronny, Ansmann, Albert, Ohneiser, Kevin, Griesche, Hannes, Radenz, Martin, Hofer, Julian, Althausen, Dietrich, Dahlke, Sandro, Maturilli, Marion, Veselovskii, Igor, Jimenez, Cristofer, Wiesen, Robert, Baars, Holger, Bühl, Johannes, Gebauer, Henriette, Haarig, Moritz, Seifert, Patric, Wandinger, Ulla, Macke, Andreas
Format: Article in Journal/Newspaper
Language:English
Published: Katlenburg-Lindau : European Geosciences Union 2021
Subjects:
550
Online Access:https://oa.tib.eu/renate/handle/123456789/8220
https://doi.org/10.34657/7258
Description
Summary:An advanced multiwavelength polarization Raman lidar was operated aboard the icebreaker Polarstern during the MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition to continuously monitor aerosol and cloud layers in the central Arctic up to 30gkm height. The expedition lasted from September 2019 to October 2020 and measurements were mostly taken between 85 and 88.5ggN. The lidar was integrated into a complex remote-sensing infrastructure aboard the Polarstern. In this article, novel lidar techniques, innovative concepts to study aerosol-cloud interaction in the Arctic, and unique MOSAiC findings will be presented. The highlight of the lidar measurements was the detection of a 10gkm deep wildfire smoke layer over the North Pole region between 7-8gkm and 17-18gkm height with an aerosol optical thickness (AOT) at 532gnm of around 0.1 (in October-November 2019) and 0.05 from December to March. The dual-wavelength Raman lidar technique allowed us to unambiguously identify smoke as the dominating aerosol type in the aerosol layer in the upper troposphere and lower stratosphere (UTLS). An additional contribution to the 532gnm AOT by volcanic sulfate aerosol (Raikoke eruption) was estimated to always be lower than 15g%. The optical and microphysical properties of the UTLS smoke layer are presented in an accompanying paper . This smoke event offered the unique opportunity to study the influence of organic aerosol particles (serving as ice-nucleating particles, INPs) on cirrus formation in the upper troposphere. An example of a closure study is presented to explain our concept of investigating aerosol-cloud interaction in this field. The smoke particles were obviously able to control the evolution of the cirrus system and caused low ice crystal number concentration. After the discussion of two typical Arctic haze events, we present a case study of the evolution of a long-lasting mixed-phase cloud layer embedded in Arctic haze in the free troposphere. The recently introduced ...