Orographically induced spontaneous imbalance within the jet causing a large-scale gravity wave event

To better understand the impact of gravity waves (GWs) on the middle atmosphere in the current and future climate, it is essential to understand their excitation mechanisms and to quantify their basic properties. Here a new process for GW excitation by orography-jet interaction is discussed. In a ca...

Full description

Bibliographic Details
Main Authors: Geldenhuys, Markus, Preusse, Peter, Krisch, Isabell, Zülicke, Christoph, Ungermann, Jörn, Ern, Manfred, Friedl-Vallon, Felix, Riese, Martin
Format: Article in Journal/Newspaper
Language:English
Published: Katlenburg-Lindau : European Geosciences Union 2021
Subjects:
550
Online Access:https://oa.tib.eu/renate/handle/123456789/8128
https://doi.org/10.34657/7168
id ftleibnizopen:oai:oai.leibnizopen.de:3w4xZIcBdbrxVwz6J7M1
record_format openpolar
spelling ftleibnizopen:oai:oai.leibnizopen.de:3w4xZIcBdbrxVwz6J7M1 2023-05-15T15:17:51+02:00 Orographically induced spontaneous imbalance within the jet causing a large-scale gravity wave event Geldenhuys, Markus Preusse, Peter Krisch, Isabell Zülicke, Christoph Ungermann, Jörn Ern, Manfred Friedl-Vallon, Felix Riese, Martin 2021 application/pdf https://oa.tib.eu/renate/handle/123456789/8128 https://doi.org/10.34657/7168 eng eng Katlenburg-Lindau : European Geosciences Union CC BY 4.0 Unported https://creativecommons.org/licenses/by/4.0/ Atmospheric Chemistry and Physics 21 (2021), Nr. 13 air temperature gravity wave inverse analysis jet stream middle atmosphere orographic effect stratosphere wind Arctic Greenland 550 article Text 2021 ftleibnizopen https://doi.org/10.34657/7168 2023-04-09T23:24:35Z To better understand the impact of gravity waves (GWs) on the middle atmosphere in the current and future climate, it is essential to understand their excitation mechanisms and to quantify their basic properties. Here a new process for GW excitation by orography-jet interaction is discussed. In a case study, we identify the source of a GW observed over Greenland on 10 March 2016 during the POLSTRACC (POLar STRAtosphere in a Changing Climate) aircraft campaign. Measurements were taken with the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) instrument deployed on the High Altitude Long Range (HALO) German research aircraft. The measured infrared limb radiances are converted into a 3D observational temperature field through the use of inverse modelling and limited-angle tomography. We observe GWs along a transect through Greenland where the GW packet covers ≈1/3 of the Greenland mainland. GLORIA observations indicate GWs between 10 and 13km of altitude with a horizontal wavelength of 330km, a vertical wavelength of 2km and a large temperature amplitude of 4.5K. Slanted phase fronts indicate intrinsic propagation against the wind, while the ground-based propagation is with the wind. The GWs are arrested below a critical layer above the tropospheric jet. Compared to its intrinsic horizontal group velocity (25-72ms-1) the GW packet has a slow vertical group velocity of 0.05-0.2ms-1. This causes the GW packet to propagate long distances while spreading over a large area and remaining constrained to a narrow vertical layer. A plausible source is not only orography, but also out-of-balance winds in a jet exit region and wind shear. To identify the GW source, 3D GLORIA observations are combined with a gravity wave ray tracer, ERA5 reanalysis and high-resolution numerical experiments. In a numerical experiment with a smoothed orography, GW activity is quite weak, indicating that the GWs in the realistic orography experiment are due to orography. However, analysis shows that these GWs are not ... Article in Journal/Newspaper Arctic Greenland LeibnizOpen (The Leibniz Association) Arctic Greenland
institution Open Polar
collection LeibnizOpen (The Leibniz Association)
op_collection_id ftleibnizopen
language English
topic air temperature
gravity wave
inverse analysis
jet stream
middle atmosphere
orographic effect
stratosphere
wind
Arctic
Greenland
550
spellingShingle air temperature
gravity wave
inverse analysis
jet stream
middle atmosphere
orographic effect
stratosphere
wind
Arctic
Greenland
550
Geldenhuys, Markus
Preusse, Peter
Krisch, Isabell
Zülicke, Christoph
Ungermann, Jörn
Ern, Manfred
Friedl-Vallon, Felix
Riese, Martin
Orographically induced spontaneous imbalance within the jet causing a large-scale gravity wave event
topic_facet air temperature
gravity wave
inverse analysis
jet stream
middle atmosphere
orographic effect
stratosphere
wind
Arctic
Greenland
550
description To better understand the impact of gravity waves (GWs) on the middle atmosphere in the current and future climate, it is essential to understand their excitation mechanisms and to quantify their basic properties. Here a new process for GW excitation by orography-jet interaction is discussed. In a case study, we identify the source of a GW observed over Greenland on 10 March 2016 during the POLSTRACC (POLar STRAtosphere in a Changing Climate) aircraft campaign. Measurements were taken with the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) instrument deployed on the High Altitude Long Range (HALO) German research aircraft. The measured infrared limb radiances are converted into a 3D observational temperature field through the use of inverse modelling and limited-angle tomography. We observe GWs along a transect through Greenland where the GW packet covers ≈1/3 of the Greenland mainland. GLORIA observations indicate GWs between 10 and 13km of altitude with a horizontal wavelength of 330km, a vertical wavelength of 2km and a large temperature amplitude of 4.5K. Slanted phase fronts indicate intrinsic propagation against the wind, while the ground-based propagation is with the wind. The GWs are arrested below a critical layer above the tropospheric jet. Compared to its intrinsic horizontal group velocity (25-72ms-1) the GW packet has a slow vertical group velocity of 0.05-0.2ms-1. This causes the GW packet to propagate long distances while spreading over a large area and remaining constrained to a narrow vertical layer. A plausible source is not only orography, but also out-of-balance winds in a jet exit region and wind shear. To identify the GW source, 3D GLORIA observations are combined with a gravity wave ray tracer, ERA5 reanalysis and high-resolution numerical experiments. In a numerical experiment with a smoothed orography, GW activity is quite weak, indicating that the GWs in the realistic orography experiment are due to orography. However, analysis shows that these GWs are not ...
format Article in Journal/Newspaper
author Geldenhuys, Markus
Preusse, Peter
Krisch, Isabell
Zülicke, Christoph
Ungermann, Jörn
Ern, Manfred
Friedl-Vallon, Felix
Riese, Martin
author_facet Geldenhuys, Markus
Preusse, Peter
Krisch, Isabell
Zülicke, Christoph
Ungermann, Jörn
Ern, Manfred
Friedl-Vallon, Felix
Riese, Martin
author_sort Geldenhuys, Markus
title Orographically induced spontaneous imbalance within the jet causing a large-scale gravity wave event
title_short Orographically induced spontaneous imbalance within the jet causing a large-scale gravity wave event
title_full Orographically induced spontaneous imbalance within the jet causing a large-scale gravity wave event
title_fullStr Orographically induced spontaneous imbalance within the jet causing a large-scale gravity wave event
title_full_unstemmed Orographically induced spontaneous imbalance within the jet causing a large-scale gravity wave event
title_sort orographically induced spontaneous imbalance within the jet causing a large-scale gravity wave event
publisher Katlenburg-Lindau : European Geosciences Union
publishDate 2021
url https://oa.tib.eu/renate/handle/123456789/8128
https://doi.org/10.34657/7168
geographic Arctic
Greenland
geographic_facet Arctic
Greenland
genre Arctic
Greenland
genre_facet Arctic
Greenland
op_source Atmospheric Chemistry and Physics 21 (2021), Nr. 13
op_rights CC BY 4.0 Unported
https://creativecommons.org/licenses/by/4.0/
op_doi https://doi.org/10.34657/7168
_version_ 1766348111019507712