An assessment of long duration geodynamo simulations using new paleomagnetic modeling criteria (Q PM)

Long-term temporal variations of the magnetic field (timescales >10 Myr), characterized from paleomagnetic data, have been hypothesized to reflect the evolution of Earth's deep interior and couplings between the core and mantle. By tying observed changes in the paleomagnetic record to mechan...

Full description

Bibliographic Details
Main Authors: Sprain, CJ, Biggin, AJ, Davies, CJ, Bono, RK, Meduri, DG
Format: Article in Journal/Newspaper
Language:English
Published: Elsevier 2019
Subjects:
Online Access:https://eprints.whiterose.ac.uk/151558/
https://eprints.whiterose.ac.uk/151558/1/1-s2.0-S0012821X19304509-main.pdf
id ftleedsuniv:oai:eprints.whiterose.ac.uk:151558
record_format openpolar
spelling ftleedsuniv:oai:eprints.whiterose.ac.uk:151558 2023-05-15T16:19:38+02:00 An assessment of long duration geodynamo simulations using new paleomagnetic modeling criteria (Q PM) Sprain, CJ Biggin, AJ Davies, CJ Bono, RK Meduri, DG 2019-11-15 text https://eprints.whiterose.ac.uk/151558/ https://eprints.whiterose.ac.uk/151558/1/1-s2.0-S0012821X19304509-main.pdf en eng Elsevier https://eprints.whiterose.ac.uk/151558/1/1-s2.0-S0012821X19304509-main.pdf Sprain, CJ, Biggin, AJ, Davies, CJ orcid.org/0000-0002-1074-3815 et al. (2 more authors) (2019) An assessment of long duration geodynamo simulations using new paleomagnetic modeling criteria (Q PM). Earth and Planetary Science Letters, 526. ARTN: 115758. ISSN 0012-821X cc_by_4 CC-BY Article NonPeerReviewed 2019 ftleedsuniv 2023-01-30T22:22:57Z Long-term temporal variations of the magnetic field (timescales >10 Myr), characterized from paleomagnetic data, have been hypothesized to reflect the evolution of Earth's deep interior and couplings between the core and mantle. By tying observed changes in the paleomagnetic record to mechanisms predicted from numerical geodynamo simulations, we have a unique tool for assessing changes in the deep interior back in time. However, numerical simulations are not run in an Earth-like parameter regime and assessing how well they reproduce the geomagnetic field is difficult. Criteria have been proposed to determine the level of spatial and temporal agreement between simulations and observations spanning historical and Holocene timescales, but no such criteria exist for longer timescales. Here we present a new set of five criteria (Quality of Paleomagnetic Modeling criteria, QPM) that assess the degree of semblance between a simulated dynamo and the temporal and spatial variations of the long-term (∼10 Myr) paleomagnetic field. These criteria measure inclination anomaly, virtual geomagnetic pole dispersion at the equator, latitudinal variation in virtual geomagnetic pole dispersion, normalized width of virtual dipole moment distribution, and dipole field reversals. We have assessed 46 geodynamo simulations using the QPM criteria. The simulations have each been run for the equivalent of at least ∼300 kyr, span reversing and non-reversing regimes, and include either homogeneous or heterogeneous heat flux boundary conditions. We find that none of our simulations reproduce all salient aspects of the long-term paleomagnetic field behavior for the past 10 Myr. Nevertheless, our simulations bracket Earth values, suggesting that an Earth-like simulation is feasible within the available computationally accessible parameter space. This new set of criteria can inform future simulations that aim to reproduce all aspects of Earth's long-term magnetic field behavior. Article in Journal/Newspaper Geomagnetic Pole White Rose Research Online (Universities of Leeds, Sheffield & York)
institution Open Polar
collection White Rose Research Online (Universities of Leeds, Sheffield & York)
op_collection_id ftleedsuniv
language English
description Long-term temporal variations of the magnetic field (timescales >10 Myr), characterized from paleomagnetic data, have been hypothesized to reflect the evolution of Earth's deep interior and couplings between the core and mantle. By tying observed changes in the paleomagnetic record to mechanisms predicted from numerical geodynamo simulations, we have a unique tool for assessing changes in the deep interior back in time. However, numerical simulations are not run in an Earth-like parameter regime and assessing how well they reproduce the geomagnetic field is difficult. Criteria have been proposed to determine the level of spatial and temporal agreement between simulations and observations spanning historical and Holocene timescales, but no such criteria exist for longer timescales. Here we present a new set of five criteria (Quality of Paleomagnetic Modeling criteria, QPM) that assess the degree of semblance between a simulated dynamo and the temporal and spatial variations of the long-term (∼10 Myr) paleomagnetic field. These criteria measure inclination anomaly, virtual geomagnetic pole dispersion at the equator, latitudinal variation in virtual geomagnetic pole dispersion, normalized width of virtual dipole moment distribution, and dipole field reversals. We have assessed 46 geodynamo simulations using the QPM criteria. The simulations have each been run for the equivalent of at least ∼300 kyr, span reversing and non-reversing regimes, and include either homogeneous or heterogeneous heat flux boundary conditions. We find that none of our simulations reproduce all salient aspects of the long-term paleomagnetic field behavior for the past 10 Myr. Nevertheless, our simulations bracket Earth values, suggesting that an Earth-like simulation is feasible within the available computationally accessible parameter space. This new set of criteria can inform future simulations that aim to reproduce all aspects of Earth's long-term magnetic field behavior.
format Article in Journal/Newspaper
author Sprain, CJ
Biggin, AJ
Davies, CJ
Bono, RK
Meduri, DG
spellingShingle Sprain, CJ
Biggin, AJ
Davies, CJ
Bono, RK
Meduri, DG
An assessment of long duration geodynamo simulations using new paleomagnetic modeling criteria (Q PM)
author_facet Sprain, CJ
Biggin, AJ
Davies, CJ
Bono, RK
Meduri, DG
author_sort Sprain, CJ
title An assessment of long duration geodynamo simulations using new paleomagnetic modeling criteria (Q PM)
title_short An assessment of long duration geodynamo simulations using new paleomagnetic modeling criteria (Q PM)
title_full An assessment of long duration geodynamo simulations using new paleomagnetic modeling criteria (Q PM)
title_fullStr An assessment of long duration geodynamo simulations using new paleomagnetic modeling criteria (Q PM)
title_full_unstemmed An assessment of long duration geodynamo simulations using new paleomagnetic modeling criteria (Q PM)
title_sort assessment of long duration geodynamo simulations using new paleomagnetic modeling criteria (q pm)
publisher Elsevier
publishDate 2019
url https://eprints.whiterose.ac.uk/151558/
https://eprints.whiterose.ac.uk/151558/1/1-s2.0-S0012821X19304509-main.pdf
genre Geomagnetic Pole
genre_facet Geomagnetic Pole
op_relation https://eprints.whiterose.ac.uk/151558/1/1-s2.0-S0012821X19304509-main.pdf
Sprain, CJ, Biggin, AJ, Davies, CJ orcid.org/0000-0002-1074-3815 et al. (2 more authors) (2019) An assessment of long duration geodynamo simulations using new paleomagnetic modeling criteria (Q PM). Earth and Planetary Science Letters, 526. ARTN: 115758. ISSN 0012-821X
op_rights cc_by_4
op_rightsnorm CC-BY
_version_ 1766006051053764608