The ice-free topography of Svalbard
We present a first version of the Svalbard ice-free topography (SVIFT1.0) using a mass-conserving approach for mapping glacier ice thickness. SVIFT1.0 is informed by more than 900’000 point-measurements of glacier thickness, totalling almost 8’300 km of thickness profiles. It is publicly available f...
Published in: | Geophysical Research Letters |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
2018
|
Subjects: | |
Online Access: | https://eprints.whiterose.ac.uk/138277/ https://eprints.whiterose.ac.uk/138277/1/F_rst_et_al_2018_Geophysical_Research_Letters.pdf https://doi.org/10.1029/2018GL079734 |
Summary: | We present a first version of the Svalbard ice-free topography (SVIFT1.0) using a mass-conserving approach for mapping glacier ice thickness. SVIFT1.0 is informed by more than 900’000 point-measurements of glacier thickness, totalling almost 8’300 km of thickness profiles. It is publicly available for download. Our estimate for the total ice volume is 6’253km3, equivalent to 1.6cm sea-level rise. The thickness map suggests that 13% of the glacierised area is grounded below sea-level. Thickness values are provided together with a map of error estimates that comprise uncertainties in the thickness surveys as well as in other input variables. Aggregated error estimates are used to define a likely ice-volume range of 5’200-7’400km3. The ice-front thickness of marine-terminating glaciers is a key quantity for ice-loss attribution because it controls the potential ice discharge by iceberg calving into the ocean. We find a mean ice-front thickness of 133m for the archipelago. |
---|