Estimates of Ozone Return Dates from Chemistry-Climate Model Initiative Simulations

We analyse simulations performed for the Chemistry-Climate Model Initiative (CCMI) to estimate the return dates of the stratospheric ozone layer from depletion caused by anthropogenic stratospheric chlorine and bromine. We consider a total of 155 simulations from 20 models, including a range of sens...

Full description

Bibliographic Details
Main Authors: Dhomse, SS, Kinnison, D, Chipperfield, MP, Salawitch, RJ, Cionni, I, Hegglin, MI, Abraham, NL, Akiyoshi, H, Archibald, AT, Bednarz, EM, Bekki, S, Braesicke, P, Butchart, N, Dameris, M, Deushi, M, Frith, S, Hardiman, SC, Hassler, B, Horowitz, LW, Hu, R-M, Jöckel, P, Josse, B, Kirner, O, Kremser, S, Langematz, U, Lewis, J, Marchand, M, Lin, M, Mancini, E, Marécal, V, Michou, M, Morgenstern, O, O Connor, FM, Oman, L, Pitari, G, Plummer, DA, Pyle, JA, Revell, LE, Rozanov, E, Schofield, R, Stenke, A, Stone, K, Sudo, K, Tilmes, S, Visioni, D, Yamashita, Y, Zeng, G
Format: Article in Journal/Newspaper
Language:English
Published: European Geosciences Union 2018
Subjects:
Online Access:https://eprints.whiterose.ac.uk/132294/
https://eprints.whiterose.ac.uk/132294/1/acp-18-8409-2018.pdf
https://eprints.whiterose.ac.uk/132294/6/acp-18-8409-2018-supplement.pdf
id ftleedsuniv:oai:eprints.whiterose.ac.uk:132294
record_format openpolar
spelling ftleedsuniv:oai:eprints.whiterose.ac.uk:132294 2023-05-15T13:52:38+02:00 Estimates of Ozone Return Dates from Chemistry-Climate Model Initiative Simulations Dhomse, SS Kinnison, D Chipperfield, MP Salawitch, RJ Cionni, I Hegglin, MI Abraham, NL Akiyoshi, H Archibald, AT Bednarz, EM Bekki, S Braesicke, P Butchart, N Dameris, M Deushi, M Frith, S Hardiman, SC Hassler, B Horowitz, LW Hu, R-M Jöckel, P Josse, B Kirner, O Kremser, S Langematz, U Lewis, J Marchand, M Lin, M Mancini, E Marécal, V Michou, M Morgenstern, O O Connor, FM Oman, L Pitari, G Plummer, DA Pyle, JA Revell, LE Rozanov, E Schofield, R Stenke, A Stone, K Sudo, K Tilmes, S Visioni, D Yamashita, Y Zeng, G 2018-06-15 text https://eprints.whiterose.ac.uk/132294/ https://eprints.whiterose.ac.uk/132294/1/acp-18-8409-2018.pdf https://eprints.whiterose.ac.uk/132294/6/acp-18-8409-2018-supplement.pdf en eng European Geosciences Union https://eprints.whiterose.ac.uk/132294/1/acp-18-8409-2018.pdf https://eprints.whiterose.ac.uk/132294/6/acp-18-8409-2018-supplement.pdf Dhomse, SS orcid.org/0000-0003-3854-5383 , Kinnison, D, Chipperfield, MP orcid.org/0000-0002-6803-4149 et al. (44 more authors) (2018) Estimates of Ozone Return Dates from Chemistry-Climate Model Initiative Simulations. Atmospheric Chemistry and Physics, 18 (11). pp. 8409-8438. ISSN 1680-7316 cc_by_4 CC-BY Article NonPeerReviewed 2018 ftleedsuniv 2023-01-30T22:07:53Z We analyse simulations performed for the Chemistry-Climate Model Initiative (CCMI) to estimate the return dates of the stratospheric ozone layer from depletion caused by anthropogenic stratospheric chlorine and bromine. We consider a total of 155 simulations from 20 models, including a range of sensitivity studies which examine the impact of climate change on ozone recovery. For the control simulations (unconstrained by nudging towards analysed meteorology) there is a large spread (±20 DU in the global average) in the predictions of the absolute ozone column. Therefore, the model results need to be adjusted for biases against historical data. Also, the interannual variability in the model results need to be smoothed in order to provide a reasonably narrow estimate of the range of ozone return dates. Consistent with previous studies, but here for a Representative Concentration Pathway (RCP) of 6.0, these new CCMI simulations project that global total column ozone will return to 1980 values in 2049 (with a 1σ uncertainty of 2043–2055). At Southern Hemisphere mid-latitudes column ozone is projected to return to 1980 values in 2045 (2039–2050), and at Northern Hemisphere mid-latitudes in 2032 (2020–2044). In the polar regions, the return dates are 2060 (2055–2066) in the Antarctic in October and 2034 (2025–2043) in the Arctic in March. The earlier return dates in the Northern Hemisphere reflect the larger sensitivity to dynamical changes. Our estimates of return dates are later than those presented in the 2014 Ozone Assessment by approximately 5–17 years, depending on the region, with the previous best estimates often falling outside of our uncertainty range. In the tropics only around half the models predict a return of ozone to 1980 values, around 2040, while the other half do not reach the 1980 value. All models show a negative trend in tropical total column ozone towards the end of the 21st century. The CCMI models generally agree in their simulation of the time evolution of stratospheric chlorine and bromine, ... Article in Journal/Newspaper Antarc* Antarctic Arctic Climate change White Rose Research Online (Universities of Leeds, Sheffield & York) Arctic Antarctic The Antarctic
institution Open Polar
collection White Rose Research Online (Universities of Leeds, Sheffield & York)
op_collection_id ftleedsuniv
language English
description We analyse simulations performed for the Chemistry-Climate Model Initiative (CCMI) to estimate the return dates of the stratospheric ozone layer from depletion caused by anthropogenic stratospheric chlorine and bromine. We consider a total of 155 simulations from 20 models, including a range of sensitivity studies which examine the impact of climate change on ozone recovery. For the control simulations (unconstrained by nudging towards analysed meteorology) there is a large spread (±20 DU in the global average) in the predictions of the absolute ozone column. Therefore, the model results need to be adjusted for biases against historical data. Also, the interannual variability in the model results need to be smoothed in order to provide a reasonably narrow estimate of the range of ozone return dates. Consistent with previous studies, but here for a Representative Concentration Pathway (RCP) of 6.0, these new CCMI simulations project that global total column ozone will return to 1980 values in 2049 (with a 1σ uncertainty of 2043–2055). At Southern Hemisphere mid-latitudes column ozone is projected to return to 1980 values in 2045 (2039–2050), and at Northern Hemisphere mid-latitudes in 2032 (2020–2044). In the polar regions, the return dates are 2060 (2055–2066) in the Antarctic in October and 2034 (2025–2043) in the Arctic in March. The earlier return dates in the Northern Hemisphere reflect the larger sensitivity to dynamical changes. Our estimates of return dates are later than those presented in the 2014 Ozone Assessment by approximately 5–17 years, depending on the region, with the previous best estimates often falling outside of our uncertainty range. In the tropics only around half the models predict a return of ozone to 1980 values, around 2040, while the other half do not reach the 1980 value. All models show a negative trend in tropical total column ozone towards the end of the 21st century. The CCMI models generally agree in their simulation of the time evolution of stratospheric chlorine and bromine, ...
format Article in Journal/Newspaper
author Dhomse, SS
Kinnison, D
Chipperfield, MP
Salawitch, RJ
Cionni, I
Hegglin, MI
Abraham, NL
Akiyoshi, H
Archibald, AT
Bednarz, EM
Bekki, S
Braesicke, P
Butchart, N
Dameris, M
Deushi, M
Frith, S
Hardiman, SC
Hassler, B
Horowitz, LW
Hu, R-M
Jöckel, P
Josse, B
Kirner, O
Kremser, S
Langematz, U
Lewis, J
Marchand, M
Lin, M
Mancini, E
Marécal, V
Michou, M
Morgenstern, O
O Connor, FM
Oman, L
Pitari, G
Plummer, DA
Pyle, JA
Revell, LE
Rozanov, E
Schofield, R
Stenke, A
Stone, K
Sudo, K
Tilmes, S
Visioni, D
Yamashita, Y
Zeng, G
spellingShingle Dhomse, SS
Kinnison, D
Chipperfield, MP
Salawitch, RJ
Cionni, I
Hegglin, MI
Abraham, NL
Akiyoshi, H
Archibald, AT
Bednarz, EM
Bekki, S
Braesicke, P
Butchart, N
Dameris, M
Deushi, M
Frith, S
Hardiman, SC
Hassler, B
Horowitz, LW
Hu, R-M
Jöckel, P
Josse, B
Kirner, O
Kremser, S
Langematz, U
Lewis, J
Marchand, M
Lin, M
Mancini, E
Marécal, V
Michou, M
Morgenstern, O
O Connor, FM
Oman, L
Pitari, G
Plummer, DA
Pyle, JA
Revell, LE
Rozanov, E
Schofield, R
Stenke, A
Stone, K
Sudo, K
Tilmes, S
Visioni, D
Yamashita, Y
Zeng, G
Estimates of Ozone Return Dates from Chemistry-Climate Model Initiative Simulations
author_facet Dhomse, SS
Kinnison, D
Chipperfield, MP
Salawitch, RJ
Cionni, I
Hegglin, MI
Abraham, NL
Akiyoshi, H
Archibald, AT
Bednarz, EM
Bekki, S
Braesicke, P
Butchart, N
Dameris, M
Deushi, M
Frith, S
Hardiman, SC
Hassler, B
Horowitz, LW
Hu, R-M
Jöckel, P
Josse, B
Kirner, O
Kremser, S
Langematz, U
Lewis, J
Marchand, M
Lin, M
Mancini, E
Marécal, V
Michou, M
Morgenstern, O
O Connor, FM
Oman, L
Pitari, G
Plummer, DA
Pyle, JA
Revell, LE
Rozanov, E
Schofield, R
Stenke, A
Stone, K
Sudo, K
Tilmes, S
Visioni, D
Yamashita, Y
Zeng, G
author_sort Dhomse, SS
title Estimates of Ozone Return Dates from Chemistry-Climate Model Initiative Simulations
title_short Estimates of Ozone Return Dates from Chemistry-Climate Model Initiative Simulations
title_full Estimates of Ozone Return Dates from Chemistry-Climate Model Initiative Simulations
title_fullStr Estimates of Ozone Return Dates from Chemistry-Climate Model Initiative Simulations
title_full_unstemmed Estimates of Ozone Return Dates from Chemistry-Climate Model Initiative Simulations
title_sort estimates of ozone return dates from chemistry-climate model initiative simulations
publisher European Geosciences Union
publishDate 2018
url https://eprints.whiterose.ac.uk/132294/
https://eprints.whiterose.ac.uk/132294/1/acp-18-8409-2018.pdf
https://eprints.whiterose.ac.uk/132294/6/acp-18-8409-2018-supplement.pdf
geographic Arctic
Antarctic
The Antarctic
geographic_facet Arctic
Antarctic
The Antarctic
genre Antarc*
Antarctic
Arctic
Climate change
genre_facet Antarc*
Antarctic
Arctic
Climate change
op_relation https://eprints.whiterose.ac.uk/132294/1/acp-18-8409-2018.pdf
https://eprints.whiterose.ac.uk/132294/6/acp-18-8409-2018-supplement.pdf
Dhomse, SS orcid.org/0000-0003-3854-5383 , Kinnison, D, Chipperfield, MP orcid.org/0000-0002-6803-4149 et al. (44 more authors) (2018) Estimates of Ozone Return Dates from Chemistry-Climate Model Initiative Simulations. Atmospheric Chemistry and Physics, 18 (11). pp. 8409-8438. ISSN 1680-7316
op_rights cc_by_4
op_rightsnorm CC-BY
_version_ 1766257058433204224